
Unsupervised related entity finding

Olga Vechtomova
Department of Management Sciences

Faculty of Engineering
University of Waterloo
Waterloo, ON, Canada

ovechtom@uwaterloo.ca
ABSTRACT
We propose an approach to the retrieval of entities that have a
specific relationship with the entity given in a query. An initial
candidate list of entities, extracted from top ranked documents
retrieved for the query, is refined using a number of statistical and
linguistic methods. The proposed method extracts the category of
the target entity from the query, identifies instances of this
category as seed entities, and computes distributional similarity
between candidate and seed entities.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models.
General Terms
Algorithms, Design, Experimentation.

Keywords
Information retrieval, entity retrieval, related entity finding.

1. INTRODUCTION
Most information retrieval systems, including commercial search
engines, respond to the user’s query by retrieving documents. If a
user is looking for entities that have a specific relationship to an
entity already known to him, he has to manually find them in the
documents retrieved by an IR system. Arguably, users with such
information needs may prefer to use a system that retrieves
entities, rather than documents, as this would eliminate the time-
consuming process of reading through large amounts of text.

In this paper we propose a method for retrieving and ranking
entities related to the entity given in the query by a specific
relationship. The evaluation was done on the dataset of the
Related Entity Finding (REF) task of the Entity track of TREC
2010 [1], as well as the “list” questions of the QA track of TREC
2005 [2]. The proposed approach is unsupervised and domain-
independent, extracting entities from the texts of documents
retrieved for the user’s query. Our goal is to minimise the reliance
on knowledge bases in the process.

The paper is organised as follows: Section 2 gives a detailed
description of the proposed method, Section 3 presents evaluation,
in Section 4 we analyse the effect of the major parameters on
performance, in Section 5 we provide an overview of related
work, and conclude the paper in Section 6.

2. METHODOLOGY
In the following subsections we describe our approach to entity
finding in detail. Figure 1 provides an overview of the main
components of the proposed method. In the first stage (rectangle
1), the system retrieves an initial set of documents for the query

from the Web. Only the sentences containing query terms plus
one preceding/following sentence are retained. Named Entity
tagging is applied to these sentences, and candidate entities are
extracted and ranked. In the second stage, the target category
name is automatically identified from the topic narrative. In stage
3, the system finds hyponyms of this category name, and selects
seed entities from the hyponyms. In stage 4, the entities
(candidates and seeds) are represented as vectors of weighted
grammatical dependency triples, and pairwise (candidate-seed)
similarity is calculated. In stage 5, candidate entities are ranked by
similarity to all seeds. Stage 1 is described in Section 2.1, while
stages 2-5 are presented in Section 2.2.

Figure 1. Components of the proposed method.

2.1 Extracting candidate entities
The components of the Entity track topics include the name of the
entity known to the user (topic entity), the document ID of its
homepage, the type of the sought (target) entities, which can be
“organization”, “person”, “location” or “product”, and a one-
sentence narrative describing the relationship between the topic
entity and the target entities. An example of a topic from the
Entity track REF task of TREC 2010 is given in Figure 2.

<num>23</num>
<entity_name>The Kingston Trio</entity_name>
<entity_URL>clueweb09-en0009-81-29533</entity_URL>
<target_entity>organization</target_entity>
<narrative>What recording companies now sell the
Kingston Trio's songs? </narrative>

Figure 2. Entity track topic example.

Copyright is held by the author/owner(s).
EOS, SIGIR 2011 workshop, July 28, Beijing, China

As the first step, queries to retrieve top documents from the Web
are generated from the “entity name” and “narrative” sections of
the topics. The objective of the algorithm is to extract named
entities and other noun phrases from the topic. For this purpose
we use a Part-Of-Speech tagger [3], a Noun Phrase chunker [4],
and a list of titles of Wikipedia pages. The algorithm is described
in detail in [5]. The resulting queries are then used to retrieve the
top 50 documents from a Web search engine. We did not evaluate
alternative values for the number of top documents retrieved. Our
motivation to use 50 is to keep the number of documents for
subsequent in-depth analysis reasonably small, and at the same
time have sufficient amount of text to extract entities from.

The retrieved documents are parsed to remove HTML tags, script
and style sections, and broken into sentences. We then extract
sentences that contain at least one query term. If a query term is a
noun, the system attempts to match its singular and plural forms.
For each such sentence, we also extract one sentence before and
one after. The sentences are then processed by the LBJ-based
Named Entity Recognizer [6]. The NER tagger only assigns the
labels of “Location”, “Organization”, “Person” and “Miscella-
neous”. For topics with the target entity type of “organization”,
“person” and “location”, we extract all entities tagged with the
corresponding NER labels, while for topics of category “Product”
we extract entities labelled as “Organization” and “Miscella-
neous”. After candidate entities are extracted, they are ranked by
TF*IDF, where TF is the number of times the entity occurs in the
50 retrieved documents, while IDF is calculated using the number
of documents containing the entity in ClueWeb09 Category B
corpus.

2.2 Ranking candidate entities by the similarity to
the target entity category
Since the chosen NER tagger can only be used to identify entities
of few broad categories, such as organisations and people, the list
of candidate entities can be noisy. This is further compounded by
the NER tagger errors. To refine the list of entities, we apply the
distributional similarity principle, which is based on the
observation that semantically close words occur in similar
contexts. If we have a small number of correct seed entities, we
can rank the candidate entities by the distributional similarity to
them. There are a number of semi-supervised methods (e.g., [7])
that use a small set of seed words to find other words that occur in
similar contexts, and therefore, are likely to be semantically
similar. The problem in our task is that the seed words are not
given. However, the topic narratives have descriptions of the
categories of entities that are to be retrieved. Our approach is to
find seed entities based on the described categories. We developed
a method to extract the category name from the narrative, e.g.,
“recording companies” from the topic in Figure 2, and adapted
Hearst’s method for the automatic acquisition of the hyponymy
relation [8] to find entities that belong to this category. Seed
entities are then selected from the hyponyms. We also developed
a new method for computing the distributional similarity between
seeds and candidate entities using BM25 with query weights [9],
and ranking the entities by similarity to all seed entities.
The stages presented in Figure 1 as rectangles 2-5 are described in
this section. As an input to stage 4, we use top m entities ranked
by TF*IDF in stage 1. This set of entities will be subsequently
referred to as “candidate entities”. The value of m was determined
to be 200 based on the training dataset (REF task of the Entity
track in TREC 2009).

2.2.1 Extracting category names from topic
narratives
To extract category names (stage 2 in Figure 1), the narratives are
first processed using Brill’s Part-of-Speech (POS) tagger [3] and a
Noun-Phrase chunker [4]. Then a set of rules is applied to select
one of the initial noun phrases (NPs) from the narrative.
Commonly, the first noun phrase in the narrative is the correct
category name, for example “recording companies”, extracted
from the following POS-tagged and NP-chunked narrative:
“[What/WP] [recording/NN companies/NNS] now/RB sell/VBP
[the/DT Kingston/NNP Trio's/NNP songs/NNS] ?/.”.

2.2.2 Identifying seed entities
After the category name is identified, the next step is to find
entities that belong to this category. We adapted the unsupervised
hyponymy acquisition method proposed by Hearst [8]. Hearst’s
method consists of using six domain- and genre-independent
lexico-syntactic templates that indicate a hyponymy relation. For
each topic, six queries are constructed using these templates and
the category name extracted from the topic narrative. For
example, the query for template “NP such as {NP,}* {(or|and)}
NP” and category name “recording companies” is: “recording
companies such as”. Each query is submitted to a commercial
search engine as a phrase (i.e. quote-delimited). If the total
number of pages retrieved by all six queries is fewer than 10, the
first word in the category name is dropped and the search is
repeated. If again it returned fewer than 10 pages, the first two
words are dropped, and so on until at least 10 pages are retrieved,
or the remaining category name is a unigram, in which case we
use however many pages were found. Also, if a category name is
a unigram, the query includes the topic title in addition to the
template, in order to minimise the extraction of unrelated entities.

The documents retrieved for each query are processed to remove
HTML tags, and split into sentences. The sentences containing the
hyponymy lexico-syntactic patterns are then processed using the
LBJ-based NER tagger [6]. Depending on the expected position of
hyponyms in the lexico-syntactic pattern, NEs either immediately
preceding, or following the pattern are extracted. If several NEs
are used conjunctively, i.e., separated by a comma, “and” or “or”,
all of them are extracted. For each topic, we extract only NEs with
the tags corresponding to the target entity type specified in the
topic. An example of text retrieved for the above query and
processed by the NER tagger is: “In large recording companies
such as [ORG EMI], the mastering process was usually controlled
by specialist staff...”. The entity “EMI” is extracted as hyponym
from this sentence as it has the correct entity type (“organization”)
for this topic.

One problem with using all found hyponyms as seed entities is
that they can be unrelated to the topic. We need to ensure that we
use only those hyponyms, for which there exists some evidence of
relationship to the topic. For this purpose, we defined as seeds the
intersection of found hyponyms and entities extracted from the
top 50 documents retrieved for the initial query as described in
Section 2.1. For example, for the above topic, the following
hyponyms were identified as seeds: "Warner Bros", "Decca",
"Columbia Records", "Capitol Records", "Bear Family Records".
If only one seed word is identified as a result of this process, we
do not perform entity re-ranking on this topic, and keep the
original TF*IDF ranking order.

2.2.3 Computing distributional similarity between
candidate and seed entities
Distributional similarity between entities is computed based on
the commonality of their contexts of occurrence in text. In their
simplest form, contexts could be words extracted from windows
around entity occurrences. Alternatively, they could be
grammatical dependency relations, with which an entity occurs in
text. The use of grammatical dependency relations is more
constraining in calculating entity similarity, and allows us to
identify tightly related entities, which could be inter-substituted in
a sentence without making it illogical and ungrammatical. In
contrast if we only use co-occurring words in calculating
similarity, we would get more loosely related entities. Several
previous approaches to calculating distributional similarity
between words use grammatical dependency relations, e.g., [10].
Since we are interested in identifying entities that are of the same
semantic category as the seed words, we also use grammatical
dependency relations.

For each seed and candidate entity we retrieve 200 documents
from ClueWeb09 Category B using BM25 [9] implemented in
Wumpus1 search engine. Each document is split into sentences,
and sentences containing the entity are parsed using Minipar2
syntactic parser to extract grammatical dependency triples. Each
dependency triple (e.g., “release V:subj:N Capitol Records”)
consists of two words/phrases and a grammatical relation that
connects them. The dependency triples are transformed into
features representing the context of each candidate and seed
entity. To transform a triple into a feature, we replace the entity
name in the triple with ‘X’, e.g., “release V:subj:N Capitol
Records” is transformed into “release V:subj:N X”. To avoid
using features that are specific to one or few seed entities, only
features that occur with at least 50% of all seed entities are used in
computing entity similarity. For each seed and candidate entities
we build a vector consisting of these features and their frequencies
of occurrence with this entity.

In order to compute the similarity between the vectors of seed and
candidate entities, we adapted BM25 with query weights formula,
QACW (Query Adjusted Combined Weight) [9]. QACW is
calculated for each seed and candidate entity combination. In the
formula, the vector of the seed entity is treated as the query and
the vector of the candidate as the document:

€

QACWc,s =
TF(k1 +1)
K +TF

⋅ QTF ⋅ IDFf
f =1

F

∑ (1)

Where: F – the number of features that a candidate entity c and a
seed entity s have in common; TF – frequency of feature f in the
vector of candidate entity; QTF – frequency of feature f in the
vector of the seed entity; K = k1×((1-b)+b×DL/AVDL); k1 – feature
frequency normalisation factor; b – vector length normalisation
factor; DL – number of features in the vector of the candidate
entity; AVDL – average number of features in all candidate
entities.

We evaluated different combinations of b and k1 values on the 20
topics from the Entity track of TREC 2009, with the best results in
NDCG@R obtained with b=0.8 and k1=0.8.
In order to calculate the IDF of a feature, we need to have access
to a large syntactically parsed corpus, such as ClueWeb09
Category B. Since we do not have such a resource, and it is

1 www.wumpus-search.org
2 http://webdocs.cs.ualberta.ca/~lindek/minipar.htm

computationally demanding to produce one, we approximate IDF
of a feature with the IDF of its component word. For example, for
the feature “release V:subj:N X” we calculate the IDF of
“release” by using its document frequency in the ClueWeb09
Category B collection.

Arguably, when calculating the similarity of candidate entities to
seed entities, we should take into account how strongly each seed
is associated with the original TREC topic. Candidate entities
similar to the seeds, which have weak association with the topic,
should be downweighted compared to those candidate entities,
which are similar to seeds strongly associated with the topic. We
propose to quantify this association by using TF*IDF entity
weights calculated in the first stage of the method (Section 2.1).
Thus, the matching score of a candidate entity with all seeds is
calculated according to:

€

EntitySeedBM25c = wsQACWc,s
s=1

S

∑ (2)

Where: ws – TF*IDF weight of the seed entity s.

Only those candidate entities that have EntitySeedBM25 greater
than zero are retained. The final ranking of entities is achieved
through a linear combination of TF*IDF and EntitySeedBM25
according to the following equation:

€

TFIDFEntitySeedBM25 =

= α × log(TFIDF) + (1−α) × log(EntitySeedBM25) (3)

Values from 0.1 to 1 at 0.1 intervals were evaluated for α on the
20 topics from the Entity track of TREC 2009, with the best
results in NDCG@R obtained with α=0.5.

3. EVALUATION
Our methods were evaluated on the dataset of the Related Entity
Finding (REF) task of the Entity track of TREC 2010 [1] and on
the “list” questions from the Question Answering (QA) track of
TREC 2005 [2]. All parameters were tuned on the 20 topics from
the REF task of the Entity track 2009.

3.1 Evaluation on the REF task of the Entity
track of TREC 2010
The requirement in the REF task of the Entity track is to retrieve a
ranked list of up to 100 entities for each topic. For each retrieved
entity, the systems are required to retrieve one homepage, which
must be represented as the ClueWeb09 Category A document ID.

Relevance judgements of entity homepages were done on a 3-
point scale: 2 – primary page (i.e. homepage of the correct entity),
1 – descriptive page related to the correct entity, and 0 – all other
pages. The two official evaluation measures are nDCG@R –
normalised discounted cumulative gain at R, where R is the
number of primary and relevant homepages for that topic, and
P@10 – fraction of primary homepages among the documents
retrieved for the top 10 entities. The Mean Average Precision
(MAP) and Precision at R were also calculated for TREC 2010
topics3. In order to find homepages of entities, we developed a
simple algorithm, which consists of retrieving the top 10
webpages for each entity from a commercial Web search engine,
filtering out a small number of common URLs, such as
“dictionary.com”, “facebook.com” and “wikipedia.org”, and using
as homepage the top ranked page that also exists in the
ClueWeb09 Category A collection. The evaluation procedure was
the same for both training and test topics. The evaluation results

3 The evaluation script provided in TREC 2009 only calculates

NDCG@R and P@10.

on the 20 training topics are given in Table 1, while the results on
the 50 test topics are shown in Table 2. TFIDF is the baseline
system that ranks entities by TF*IDF (Section 2.1), while
TFIDFEntity-SeedBM25 is the system that uses distributional
similarity of entities to seeds in entity ranking (Equation 3 in
Section 2.2.3).

Table 1. Evaluation results on 20 REF training topics.

Run nDCG@R P@10 Rel. retr. Prim. Retr.
TFIDF 0.1712 0.1450 86 63
TFIDFEntity
SeedBM25 0.1705 0.1700 85 62

Table 2. Evaluation results on 50 REF test topics.

Run nDCG
@R P@10 MAP R-prec Rel.

retr.
Prim.
Retr.

TFIDF 0.1226 0.0936 0.0588 0.1006 89 152
TFIDFEntity
SeedBM25

0.1400‡ 0.1043 0.0722‡ 0.1140 91 157

3.2 Evaluation on the “list” questions from the
QA track of TREC 2005
The “list” type of questions in the QA track of TREC 2005 are
formulated differently from the Entity track REF topics. For each
topic a target entity is specified, which is similar to the
entity_name part of Entity track topics. Each topic has one or two
list questions, formulated in a similar way as the narrative section
of the Entity track topics. A major difference of the QA list
questions from the Entity track REF topics is that target entity
types are not given. Also, some list questions are looking for
answers of types other than “Person”, “Organization”, “Location”
and “Product”. For our evaluation we only selected questions
seeking entities of the above four types, as other types do not
necessarily fall under the definition of an entity accepted in the
Entity track, i.e. something that has a homepage. We also
manually added target entity types (i.e., “Location”, “Product”,
“Person” or “Organization”) to make the questions conform to the
Entity track topic format. In total, we used 74 out of 93 list
questions in the QA 2005 dataset.
The official evaluation methodology for the list questions in the
QA track required the participating sites to submit an unordered
set of answer–documentID pairs, where answer is the entity string
and documentID is the ID of a document supporting the entity as
an answer. The document collection in the official QA track
evaluation was AQUAINT. The evaluation measure was an F-
measure, computed as F=(2*IP*IR)/(IP+IR), where Instance
Recall (IR) is the number of distinct instances (entities) judged
correct and supported by a document out of the total number of
known correct and supported instances, and Instance Precision
(IP) is the number of distinct instances judged correct and
supported by a document out of the total number of instances
returned. It is, however, not possible to use this evaluation
methodology post-TREC since the number of judged supporting
documents is very limited. In order to allow researchers to
perform post-TREC evaluations, the track organisers released sets
of patterns representing the correct answer strings extracted from
the answer pool. The set contains only one pattern representing
each correct answer, and takes the form of a regular expression,
such as “(Holland|Netherlands)”. Two major limitations of this

‡ statistically significant improvement over TFIDF run at 0.01

level (2-tail paired t-test)

pattern set are: it only contains correct answers from the pool, and
may therefore be incomplete for some topics, and, secondly, the
patterns themselves may not exhaustively cover all spelling and
lexical variations of answers.

The evaluation reported in this section was performed using these
patterns. F-measure as well as standard evaluation measures used
in the Entity track of TREC 2010 were calculated. Since
supporting documents are not used, Instance Recall is re-defined
as the number of distinct instances that match patterns out of the
total number of patterns for the question, and Instance Precision
as the number of distinct instances that match patterns out of the
total number of instances returned. Each pattern can only be
matched once, in other words, any repeated matches on the same
pattern are ignored. The results are summarised in Table 3.

Table 3. Evaluation results on 74 QA 2005 list questions.

Run nDCG
@R P@10 MAP R-prec Rel.

retr.
F-

measure
TFIDF 0.1469 0.1432 0.1241 0.1362 349 0.0831
EntitySeed
BM25 0.1561 0.1473 0.1299 0.1440 359 0.0854

4. DISCUSSION AND ANALYSIS
A major contribution of the proposed method is automatic
identification of seed entities based on the category name
extracted from the topic narrative. Most automatically identified
seeds are not the correct answers. Table 4 shows the statistics for
the 74 list questions in the QA 2005 dataset.

Table 4. Statistics for 74 QA 2005 list questions.

 seeds correct
answers

seeds ∩ correct
answers

Total 1269 1005 217
Mean 17.15 13.58 2.93
Median 3.5 10.5 0

One question that we would like to investigate is how the
performance of automatically identified seeds compares to the
performance of the correct answers used as seeds. In order to do
this, we performed (a) runs with different numbers of correct
answers as seeds, and (b) runs with varying proportion of correct
and incorrect answers used as seeds. The correct answers were
randomly selected from the list of correct answer patterns (see
Section 3.2), while as incorrect answers we used randomly
selected automatically found seeds that are not in the list of
correct answer patterns.
Another parameter that merits further analysis is the minimum
number of seeds that a feature has to co-occur with to be
considered in the computation of distributional similarity between
a seed and a candidate entity. In the runs reported above we use
only those features that co-occur with at least 50% of all seeds
(Section 2.2.3). This may pose a problem if the number of seeds is
large, which will mean that only few or even no features may
satisfy this condition. In this section we report a systematic
evaluation of different values for this parameter, referred to as
“seed co-occurrence threshold”.
Figure 3 shows the effect of the number of correct answers as
seeds and the seed co-occurrence threshold on nDCG@R for 74
list questions in QA 2005. Each data series in the graph represents
a different co-occurrence threshold and the X-axis represents the
maximum number of correct answers used as seeds. The
performance of the TFIDF system (Table 3) is also shown for
reference here. Each run only uses up to n number of correct

answers as seeds, where n values range from 4 to 30 in the
increments of 2. The seed co-occurrence threshold values range
from 2 to 16 in the increments of 2. All other parameters are kept
the same as in TFIDFEntitySeedBM25 run reported in Table 3.

Figure 3. Effect of the number of correct answers as seeds and

seed co-occurrence thresholds on nDCG@R (QA 2005).
The best performance in nDCG@R (0.1723) is achieved with 4
correct answers as seeds and seed co-occurrence threshold of 2.
Interestingly, the co-occurrence threshold of 2 gives consistently
good performance regardless of the number of seeds used.
Another somewhat unexpected result is that the number of correct
answers used as seeds does not seem to affect performance much.
The highest nDGC@R is achieved with 4 and 20 seeds, used with
the co-occurrence threshold of 2. Performance tends to increase a
little with the initial increase in the number of seeds for runs using
seed co-occurrence thresholds from 4 through 12, but then reaches
a plateau at around 20 seeds. The plateau effect could be
explained by the fact that only few topics have a large number of
correct answers. As can be seen from Figure 4, only 13 out of 74
topics have 20 or more correct answers.

Figure 4. Distribution of correct answers for the QA 2005 list

questions.
Next, we analyse how the presence of incorrect answers affects
performance. We take n correct answers as seeds, and add to them
m automatically identified seeds, which are not in the set of
correct answers. The n is set to 4 and 20, which showed best
results; for m we test values from 0 to 40 in the increments of 2.

The results are given in Figure 5. Also plotted are the results for
n=0. The TFIDF system is also shown for reference. Surprisingly,
the best nDCG@R performance (0.1790) is achieved with 1
automatically identified seed added to 4 correct answers. This is
3.9% better than using only 4 correct answers as seeds. Similarly,
adding 1 and 2 seeds to 20 correct answers leads to performance
gains. This suggests that while it is useful to have correct answers
as seeds, a small number of incorrect answers is not detrimental,
and can even lead to small improvements. Also, adding larger
number of incorrect answers has only a minor negative effect.

Figure 5. Effect of the number of incorrect answers on

nDCG@R (QA 2005).

5. RELATED WORK
In this section we review some of the approaches to related entity
finding in the Entity track of TREC. Most of the methods
developed by participants of the Entity track start with the
retrieval of some units of information (documents, passages,
sentences) in response to the queries generated from the topic.
The retrieved units are then used for extracting candidate entities.
Below we discuss various approaches based on: (a) how the
queries are constructed, (b) what units are retrieved (e.g.,
documents, passages, sentences), (c) how candidate entities are
extracted and ranked.

5.1.1 Query construction
As an alternative to using “entity name” and “narrative” sections
of topics as queries directly, some query structuring and
expansion methods are explored. Vydiswaran et al. [11] model the
information need as a triple (topic entity; relationship type; target
entity), of which the first two are known. The words denoting the
relationship are extracted from the narrative and expanded with
WordNet synonyms. Fang et al. [12] expand the entities from
narratives with their acronyms identified using dictionaries.

5.1.2 Retrieval units
Most approaches start with the retrieval of documents by using
experimental IR systems and/or web search engines. For example,
[11] use documents retrieved by Indri, from which they select
snippets containing the query terms. McCreadie et al. [13] use the
Divergence from Randomness model, a term proximity-based
model, and the number of incoming links to the documents. Zhai
et al. [14] use BM25, Fang et al. [12] use Google results filtered
by the ClueWeb09 Category B documents, and Wu and Kashioka
[15] compare the use of Indri and Google.

0.14	

0.145	

0.15	

0.155	

0.16	

0.165	

0.17	

0.175	

4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	

number	
 of	
 correct	
 answers	
 used	
 as	
 seeds	

2	
 4	
 6	

8	
 10	
 12	

14	
 16	
 TFIDF	

0	

1	

2	

3	

4	

5	

6	

7	

8	

1	
 4	
 7	
 10	
 13	
 16	
 19	
 22	
 25	
 28	
 31	
 34	
 37	
 40	
 43	
 46	
 49	
 52	
 55	
 58	
 61	
 64	
 67	

nu
m
be
r	
 o
f	
 t
op
ic
s	

number	
 of	
 correct	
 answers	

0.14	

0.145	

0.15	

0.155	

0.16	

0.165	

0.17	

0.175	

0.18	

0.185	

0	
 1	
 2	
 4	
 6	
 8	
 10	
 12	
 14	
 16	
 18	
 20	
 22	
 24	
 26	
 28	
 30	
 32	
 34	
 36	
 38	
 40	

number	
 of	
 incorrect	
 answers	

4	
 correct	
 20	
 correct	

0	
 correct	
 TFIDF	

5.1.3 Candidate entity extraction and ranking
Vydiswaran et al. [11] extract candidate entities from the
document snippets containing query terms, and rank them by a
combination of the frequency of candidate entities in the retrieved
snippets and their co-occurrence with the topic entity. McCreadie
et al. [13] use DBPedia and US Census data to build represen-
tations of entities found in the ClueWeb09 Cat. B collection. Each
entity representation includes alternative names (DBPedia
aliases), DBPedia categories and documents in ClueWeb09 Cat. B
containing the entity. They propose a voting model to rank
entities. Zhai et al. [14] use titles and anchor texts in the retrieved
documents as candidate entities. For each candidate entity a
pseudo-document is built, consisting of top 100 sentences
containing this entity. They experiment with ranking entities
based on the similarity of their pseudo-documents and the pseudo-
documents of the topic entity. Wu and Kashioka [15] use
Wikipedia’s hyperlink structure, to reduce the list of candidate
entities. Entity scores are calculated based on the presence of
hyperlinks between the Wikipedia pages of the candidate entity
and the topic entity. They then retrieve snippets containing each
candidate entity, and calculate a similarity score between the set
of snippets and the topic entity, experimenting with a language
modelling approach and Support Vector Machines. Kaptein et al.
[16] calculate similarity between the topic entity and each
candidate entity based on the co-citation information from the
hyperlink graph constructed for the ClueWeb09 Cat. B collection.
They also propose a method that extracts candidate entities from
Wikipedia. Fang et al. [12] combine a number of approaches for
ranking candidate entities, such as extracting entities from tables
and lists in the retrieved web documents and using proximity in
retrieved documents between a candidate and topic entities. One
other method consists of extracting the first term from the
narrative, which usually represents the category of the sought
entities, and checking for each candidate entity if it occurs in the
body or categories of its Wikipedia page. Bron et al. [17] select
entities co-occurring with the topic entity, and propose a co-
occurrence language model based on the contexts in which a
candidate co-occurs with the topic entity.

6. CONCLUSION
We proposed an approach to finding related entities which relies
primarily on statistical and linguistic methods. The approach was
evaluated using the Entity track dataset of TREC 2010, as well as
the QA track “list” questions from TREC 2005. Candidate entities
are extracted using a NER tagger from documents retrieved in
response to the query. As a separate step, target entity category
names are automatically extracted from topic narratives, and are
used to extract seed entities, i.e. entities that are likely to belong to
this category. Top m entities ranked by TF*IDF are then re-ranked
by their distributional similarity to the seeds. We developed a
method for ranking candidate entities by the similarity to all
seeds, whereby seeds are weighted by the strength of association
with the topic. For computing the pairwise similarity between the
vectors of the seed and candidate entities, we adapted BM25 with
query weights. Evaluation results show that re-ranking of
candidates by their similarity to seeds is effective, with some
improvements being statistically significant.

7. REFERENCES
[1] Balog K., Serdyukov P., de Vries A.P. (2010) Overview of

the TREC 2010 Entity Track. In Proc. of TREC 2010.

[2] Voorhees E.M. and Dang H.T. (2005) Overview of the
TREC 2005 Question Answering Track. In Proc. of TREC
2005.

[3] Brill E. (1995) Transformation-based error-driven learning
and natural language processing: a case study in part of
speech tagging. Computational Linguistics, 21(4), 543-565.

[4] Ramshaw L. and Marcus M. (1995) Text Chunking Using
Transformation-Based Learning. In Proc. of the Third ACL
Workshop on Very Large Corpora, MIT.

[5] Vechtomova O. (2010) Related Entity Finding: University of
Waterloo at TREC 2010 Entity Track. In Proc. of TREC
2010.

[6] Ratinov L. and Roth D. (2009) Design Challenges and
Misconceptions in Named Entity Recognition. In Proc. of the
Annual Conference on Computational Natural Language
Learning (CoNLL).

[7] Thelen, M. and Riloff E. (2002) A bootstrapping method for
learning semantic lexicons using extraction pattern contexts.
In Proc. of EMNLP 2002.

[8] Hearst M. A. (1992) Automatic acquisition of hyponyms
from large text corpora. In Proc. of the 14th Conference on
Computational Linguistics, 539-545.

[9] Spärck Jones, K., Walker, S., & Robertson, S. E. (2000). A
probabilistic model of information retrieval: Development
and comparative experiments. Information Processing and
Management, 36(6), 779–808 (Part 1); 809–840 (Part 2).

[10] Lin, D. (1998) Automatic retrieval and clustering of similar
words. In Proc. of the 17th international Conference on
Computational Linguistics, 768-774.

[11] Vinod Vydiswaran V.G., Ganesan K., Lv Y., He J., Zhai
C.X. (2009) Finding Related Entities by Retrieving Rela-
tions: UIUC at TREC 2009 Entity Track. In Proc. of TREC
2009.

[12] Fang Y., Si L., Yu Z., Xian Y., Xu Y. (2009) Entity Retrieval
with Hierarchical Relevance Model, Exploiting the Structure
of Tables and Learning Homepage Classifiers. In Proc. of
TREC 2009.

[13] McCreadie R., Macdonald C., Ounis I., Peng J., Santos
R.L.T. (2009) University of Glasgow at TREC 2009:
Experiments with Terrier. In Proc. of TREC 2009.

[14] Zhai H., Cheng X., Guo J., Xu H., Liu Y. (2009) A Novel
Framework for Related Entities Finding: ICTNET at TREC
2009 Entity Track. In Proc. of TREC 2009.

[15] Wu Y., Kashioka H. (2009) NiCT at TREC 2009: Employing
Three Models for Entity Ranking Track. In Proc. of TREC
2009.

[16] Kaptein R., Koolen M. and Kamps J. (2009) Result Diversity
and Entity Ranking Experiments: Anchors, Links, Text and
Wikipedia. In Proc. of TREC 2009.

[17] Bron M., He J., Hofmann K., Meij E., de Rijke M., Tsagkias
M., and Weerkamp W. (2010) The University of Amsterdam
at TREC 2010: Session, Entity and Relevance Feedback. In
Proc. of TREC 2010.

