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Abstract 
The paper describes a semi-supervised approach to extracting multiword aspects of user-written 
reviews that belong to a given category. The method starts with a small set of seed words 
representing the target category, and calculates distributional similarity between the candidate and 
seed words. We compare three distributional similarity measures (Lin’s, Weeds’ and balAPinc), 
and a document retrieval function, BM25, adapted as a word similarity measure. We then 
introduce a method for identifying multiword aspects by using a combination of syntactic rules 
and a co-occurrence association measure. Finally, a method for ranking multiword aspects by the 
likelihood of belonging to the target aspect category is described. The task used for evaluation is 
extraction of restaurant dish names from a corpus of restaurant reviews. 

1. Introduction 
There is a rapidly growing trend of end-users writing reviews of businesses, services, products 
and events on the Web. Numerous websites, for example CityGrid and TripAdvisor, allow people 
to write reviews of businesses, such as restaurants and hotels. While many of them offer different 
search features, such as search by location or by the opinion score, there is a need for a more fine-
grained search by different aspects of businesses that are discussed in user reviews. For instance, 
a user may be interested to know which restaurants serve the best seafood dishes, or the user may 
like to see the list of dish names that people have commented on positively in their reviews of a 
particular restaurant. As the number of reviews for businesses and products is constantly growing, 
it is becoming increasingly time-consuming for a user to read through all of them. It would be, 
therefore, useful to automatically extract aspects of businesses or products that people comment 
about in their reviews. The initial motivation for the work presented in this paper stemmed from a 
real need of our industry partner in a recent research project, which was developing a system for 
recommending local activities, such as eating out, to users, and needed a method for 
automatically extracting aspects of specific categories from user-written reviews, so that they 
could be included in the recommendations of a specific business.   

In this paper we present a complete system for extracting multiword units (MWUs) belonging to 
a given category of business or product aspects. The method is semi-supervised: given a small 
number of seed words representing a specific category of aspects, for example, dish names in 
restaurant reviews, we identify other dish names that people mentioned in their reviews. 
Identifying review aspects belonging to a specific category has different challenges compared to a 
general task of building lexicons of semantically similar words. Firstly, many of the aspects are 
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multiword units. Secondly, many of them have complex syntactic structure, including 
prepositions and conjunctions, for example: “roasted asparagus with pancetta, parmesan, olive oil 
and a fried egg on top”. Thirdly, many are rare or even unique, i.e. occur only once in the corpus 
of reviews or even the Web. Lastly, many aspects are pre-modified by subjective adjectives, 
which must be identified and separated. We propose a multi-staged approach towards identifying 
such units that uses a combination of statistical methods, such as distributional similarity 
measures and co-occurrence association measures, and Natural Language Processing (NLP) 
techniques such as syntactic dependency parsing. The presented system could be used in a variety 
of end-user applications, for example a recommender system that suggests a restaurant and shows 
to the user the list of dish names mentioned in other users’ reviews. Another example is an 
application that calculates a score for a restaurant based on the polarity of opinions expressed 
about different categories of review aspects, e.g. dish names, ambiance and staff.   

The advantage of a semi-supervised approach compared to unsupervised methods, such as 
clustering, is that there is more control over what categories of entities are extracted for a 
particular application. For instance, in restaurant reviews, there may be a need to identify dish 
names, aspects related to ambiance and atmosphere, and aspects related to service and staff. 
Alternatively, there may be a need to identify more fine-grained categories of dish names, such as 
desserts or beverages. By providing a small set of seed words that belong to the desired category, 
the end-user or the application developer can control what aspects are extracted. Unsupervised 
methods, such as clustering, do not offer such control, and are more suited for applications where 
there is a need to discover the categories of aspects that exist in the corpus. 

On the other hand, the advantage of semi-supervised approaches over supervised methods, is that 
the latter require a large set of labeled data, for instance, all dish names labeled in a large subset 
of a corpus. Manual labeling of a large dataset is a labour-intensive task. In contrast, semi-
supervised methods only require a small set of example seed words, which can be easily provided 
by application developers or even end-users. 

The presented system was evaluated on a corpus of restaurant reviews. The task used for 
evaluation is extraction of dish names. Dish names are a particularly challenging category of 
aspects. There are many long and syntactically complex MWUs among them. Also, many MWU 
dish names have low frequency, which makes it challenging to apply some statistical methods 
commonly used for calculating similarity between words. For instance, we cannot effectively 
apply distributional similarity methods on the whole MWUs with low frequencies, since there is 
not enough context to calculate similarity between them and seed words. 

The major novel contribution of the work described in this paper compared to our two earlier 
papers (Vechtomova and Robertson, 2012; Vechtomova, 2012) is the method for identifying and 
weighting syntactically complex MWUs, which belong to a specific category (Section 2.3). In 
(Vechtomova and Robertson, 2012) the method for using BM25 as a term-term similarity 
measure was proposed, and evaluated on the Entity track and QA datasets of TREC. In 
(Vechtomova, 2012), this measure was applied to the task of dish name extraction, however, the 
method presented there used only simple noun phrases conforming to the “JJ(≥0) NN(≥1)” 
pattern, output by a Noun Phrase chunker. This paper presents new methods for identifying and 
weighting syntactically complex MWUs (Sections 2.3 and 3.2). The weighting of single words by 
distributional similarity to seeds (Section 2.2) is done using the method presented in 
(Vechtomova, 2012), therefore here we used the tuning parameters determined experimentally in 
that work. 
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The paper is organised as follows: Section 2 describes the proposed system; Section 3 presents 
evaluation; Section 4 gives an overview of related work, and Section 5 concludes the paper and 
outlines future research directions. 

2. Methodology 

2.1 Architecture of the system 
The overall architecture of the system is presented in Figure 1. The goal of the system is to 
extract from each review all MWUs that belong to the target category of aspects. To illustrate the 
use of the system, we use restaurant dish names as an example of the target category throughout 
the paper. 

The system takes as input the corpus of reviews and a small initial set of seed words. The 
“Compute similarity” module (box 1b in Fig. 1) calculates distributional similarity between the 
set of dish name seed words and single nouns. One of the extensions of the system (“NPMI-
weighted method” described in Section 2.3.1.2) additionally uses a small set of seed subjective 
adjectives to find and remove subjective modifiers in MWUs (box 1a in Fig. 1). In both modules 
1a and 1b, the similarity is calculated between the words’ feature vectors, where the features of a 
word are grammatical dependency triples it co-occurs with. An example of a dependency triple is 
“eat  VB:dobj:NN  pizza”, which represents a direct object grammatical relationship between the 
verb “eat” and the noun “pizza”. We compare a number of distributional similarity measures, 
namely, BM25 (Robertson et al., 1995) adapted to the use as a term-term distributional similarity 
measure (Vechtomova and Robertson, 2012), Lin’s measure (Lin, 1998), a measure by Weeds 
and Weir (2003) and a directional similarity measure balAPinc by Kotlerman et al. (2009). The 
process of computing similarity between single words and seeds using BM25 is described in 
Section 2.2. An overview of the other three distributional similarity methods is given in Section 
4.1. 

The module “Identify and weight MWU aspects” (Box 2 in Fig. 1) takes a corpus of reviews 
parsed by a dependency parser, and uses a combination of syntactic rules and a co-occurrence 
association measure to identify MWU aspects. It also calculates the score for each MWU of how 
likely it is to belong to the target aspect category. In calculating the score, we use similarity of its 
constituent single words to the seeds, computed by module 1b. Section 2.3 describes the process 
of identifying and weighting MWU aspects in detail. 
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Figure 1. Architecture of the system 

 

2.2 Ranking single words by distributional similarity to seeds 
We start the process with a small set of seeds, which in our example task are single nouns 
denoting dish names, and a set of words we want to rank (candidate words), that comprise all 
single nouns in the corpus. In this section we describe the process of building feature vectors for 
both seeds and candidate words, and the process of ranking candidates with respect to seeds by 
using the BM25 function. 

2.2.1 Building feature vectors 
The context of each seed and candidate word is represented as a vector of context features. As a 
context feature we use grammatical dependency triples, in a similar way as was done by Lin 
(1998). In detail, our method consists of the following steps: 

1. Perform dependency parsing of the corpus using Stanford dependency parser (de Marnefe et al., 
2006). Each dependency triple consists of two words, their POS tag and a dependency 
relationship that connects them, for example:  “eat  VB:dobj:NN  pasta”. 

2. For each seed word s, extract all dependency triples that contain it, and build a vector feature 
from each triple, by substituting the word s with “X”. For instance, if we build a vector for the 
word “pasta”, the dependency triple “eat  VB:dobj:NN  pasta” is transformed into:  “eat  
VB:dobj:NN  X”. The method has a tuning constant t, which represents the number of seed words 
that a feature has to co-occur with in order to be included in the vector. The set {F} contains all 
features that have the seed co-occurrence frequency greater than t. Only these features are 
included in the vectors of seed words. The optimal values for t for each of the four measures 
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(BM25, Lin’s method, Weeds’ method and balAPinc) were experimentally determined in the 
previous work (Vechtomova, 2012), and are used in the experiments presented in this work.  

3. For each candidate word c extract all dependency triples with which it co-occurs, transform 
them into features in the same way as in Step 2. Include in the vector only the features that belong 
to set {F}. 

4. For each feature in the vector of a seed or candidate word, record TF, which is the frequency of 
co-occurrence of the feature with this word in the corpus. In the example above, TF of the feature 
“eat  VB:dobj:NN  X” in the vector of the word “pasta” is the frequency of occurrence of  “eat  
VB:dobj:NN  pasta” dependency triple in the corpus. We used the parsed corpus of 157,865 
restaurant reviews to get frequencies of triples. 

2.2.2 Computing similarity between vectors  
The objective of this step is to rank all candidate words in the corpus by similarity to all seed 
words. The first step is to calculate similarity in a pairwise manner between each seed and each 
candidate word. The result of this step is a ranked list of candidates for each seed. The second 
step is combining these lists into one ranked list.  

In this section we describe a method using BM25 as a term-term similarity function, presented in 
(Vechtomova and Robertson, 2012). In this method, similarity between vectors of a seed and a 
candidate is computed by using the BM25 document ranking model with query weights, called 
Query Adjusted Combined Weight (QACW) (Spärck Jones et al., 2000). In the QACW formula, 
the vector of the seed word s is treated as the query and the vector of the candidate word c as the 
document: 

𝑄𝐴𝐶𝑊%,' =
𝑇𝐹(𝑘- + 1)
𝐾 + 𝑇𝐹

×𝑄𝑇𝐹×𝐼𝐷𝐹5

6

57-

																						(1) 

Where: F – the number of features that a candidate word c and a seed word s have in common; 
TF – frequency of feature f in the vector of candidate word; QTF – frequency of feature f in the 
vector of the seed entity (computed in the same way as TF); K = k1×((1−b)+b×DL⁄AVDL); k1 – 
feature frequency normalisation factor; b – document length normalisation factor; DL – number 
of features in the vector of the candidate entity; AVDL – average number of features in all 
candidate entities.  

The optimal values for b and k1 for the task of ranking single dish names were determined 
experimentally in (Vechtomova, 2012) to be respectively 0.9 and 1.6. The same values are used 
in this work. 

The IDF (Inverse Document Frequency) of the feature is calculated as follows: 

𝐼𝐷𝐹5 = 𝑙𝑜𝑔
𝑁
𝑛5
																																									(2) 

Where, nf – number of candidate word vectors the feature f occurs in, N – number of candidate 
word vectors. 

After all candidate words are ranked by similarity to each seed, their scores in each ranked list are 
normalised so that they are in the range between zero and one. The normalised scores of the 
candidate word c in the ranked lists for all seed words are then summed: 
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The SeedBM25 scores for the candidate words are then normalised to be in the range between 
zero and one, so that they can be used in computing the MWU score according to the method 
described in Section 2.3.2. 
 

2.3 Extracting and ranking multiword units 
Here we describe a method for extracting MWU aspects and ranking them by the likelihood of 
belonging to the target category of review aspects. This stage is represented as Box 2 in Figure 1.  

2.3.1 Identifying MWU aspects 
Aspects of user-written reviews are frequently multiword units,  many of which have a rather 
complex syntactic structure, including prepositions and conjunctions. Examples of syntactically 
complex dish names labeled by annotators in our experiments include: “pasta with lamb, olives, 
goat cheese and rosemary”, “coconut ice cream with sticky rice”. Currently available state-of-the-
art Noun phrase (NP) chunkers, for example, Illinois chunker (Punyakanok and Roth, 2001), do 
not identify complex syntactic structures, such as the above. For instance, for the last phrase 
above, the Illinois chunker outputs two separate NPs: “coconut ice cream” and “sticky rice”. 
Another problem in extracting complex MWU aspect names is identifying their proper 
boundaries. For instance, the phrase “good food and friendly service” contains two aspects 
(“good food” and “friendly service). Lastly, many aspects in user-written reviews contain 
subjective modifiers, e.g., “delicious seafood pasta”, which must be identified and removed. 

In this section we present a novel algorithm that “builds” MWU aspects in a bottom-up manner. 
We begin the process with the single nouns, which are the governing words in syntactic 
dependency relations, and by following a set of syntactic rules, we merge them with the adjacent 
words in an iterative manner, one at a time. In addition to syntactic rules, we also calculate the 
degree of co-occurrence association using Normalized Pointwise Mutual Information (NPMI) 
between two strings to be merged. Only if all the syntactic rules are satisfied and the NPMI is 
above the threshold, then the two strings are merged. The algorithm is presented as a pseudocode 
in Table 1, and described in more detail below. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

For each document 
Do dependency parse of the document 
For each sentence 

#Merge Stage 1: merge contiguous "nn", "amod" and "poss" relations 
Until no more merges 

For each governing word g in a dependency relation 
  If POS (g) = “NN” 
   For each word d  depending on g 
    Get all words (inBetweenWords) in text between g and d 
    If inBetweenWords = 0 
     Do CheckAssociationMergeStage1 
     If CheckAssociation=passed 
      Merge d with g  

#Merge Stage 2: merge contiguous “prep_*” and “conj_and” relations 
Until no more merges 

For each governing word g in a dependency relation 
  If POS(g) = “NN” 
   For each word d  depending on g 
    Get all words (inBetweenWords) in text between g and d 



 7 

20 
21 
22 
23 
24 
25 
 

    If inBetweenWords consist only of (i) the same word as the name of 
the dependency relation (e.g. "and" in "conj_and"), (ii) a token with POS=“DT”, (iii) 
a token with POS=”,”    
     Do CheckAssociationMergeStage2 
     If CheckAssociation=passed 
      Merge d with inBetweenWords and g  

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
 

CheckAssociationMergeStage1 
 If POS(d) = “NN” 

If relation is “nn” or “amod”  
 CheckAssociation=passed 
Else If relation is “poss” 
 Calculate NPMI 
 If NPMI > threshold_stage1 
  CheckAssociation=passed 

 Else 
  If relation is “nn” or “amod” 

 Calculate NPMI 
 If NPMI > threshold_stage1 
  CheckAssociation=passed 
 

39 
40 
41 
42 
43 
44 
 

CheckAssociationMergeStage2 
 If relation is “prep_in” or “prep_of” or “prep_over” or “prep_under” or “prep_with” or “conj_and” 
  If POS(d) = “NN” 

 Calculate NPMI 
 If NPMI > threshold_stage2 
  CheckAssociation=passed 

Table 1. Algorithm for identifying MWU aspects. 

In Stage 1 of the algorithm (lines 4-13 in Table 1), we iteratively merge words that have one of 
the following dependency relations: noun compound modifier (nn), adjectival modifier (amod), 
and possession modifier (poss). Examples of each respective relation are: “field salad” (nn), 
“balsamic vinegar” (amod), “chef’s choice” (poss). We split the document into sentences and 
perform a dependency parse of each sentence using the Stanford dependency parser. For each 
dependency relation in a sentence, e.g., “amod(vinegar, balsamic)”, we take its governing word g 
(here “vinegar”), and check if it is a noun (line 7 in Table 1). If it is, we then take all other 
dependency relations in the same sentence where it is also a governing word and from each we 
take the word d that depends on it, provided that it is immediately next to g in text (lines 9-10) 
We then apply a set of rules to check if d and g should be merged into one MWU (module 
CheckAssociationMergeStage1, lines 26-38). Specifically, if d is a noun, and the relation is nn or 
amod we merge them. In the case when the relation is poss, or when d is not a noun and relation 
is either nn or amod, we calculate Normalized Pointwise Mutual Information (NPMI) between d 
and g. Only if NPMI is above the predefined threshold (threshold_stage1), the two words are 
merged. The calculation of NPMI is described in Section 2.3.1.1. Merging in our algorithm 
means that the following actions are taken: g is modified by appending d to it in the correct order, 
d is deleted, the dependency relation between d and g is deleted. The algorithm then continues to 
the next iteration with the updated data structures. The process stops when no more merges take 
place. Note that the POS of g does not change throughout the iterations (e.g. if we start with 
“vinegar” as g (POS=“NN”) and then add “balsamic” as d to it, the POS of the new g, “balsamic 
vinegar”, stays as “NN”). 
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After all the valid merges have been made in Stage 1, the algorithm proceeds to Stage 2 (lines 14-
25), where we merge words that have either a valid prepositional relation prep_*, i.e. connected 
with a preposition “in”, “of”, “over”, “under” or “with”, or have a conj_and relation, which 
means that the two words are connected by coordinating conjunctions “and” or “,”. Similar to 
Stage 1, we take each governing word g, and from each dependency relation containing g we take 
its depending word d. For each d, we take all the words in text between g and d (referred to as 
inBetweenWords). We then check that inBetweenWords consist only of the following: one word 
that matches the name of the relation, (e.g., if the relation is prep_in, then the valid word would 
be “in”), one optional determiner, such as “the” (i.e., token with POS=”DT”), and one optional 
comma (i.e., token with POS=”,”). We also ensure that d is a noun, that there exists one of the 
above valid relations between g and d, and that the NPMI between g and d is above the 
predefined threshold (threshold_stage2). If all the above conditions are satisfied, we modify g by 
appending to it d and inBetweenWords in the correct order. For example, in the sentence “I had 
fish and chips.”,  one of the dependency relations is conj_and(fish-3, chips-5), with “fish” as g, 
“chips” as d and “and” as inBetweenWords. After merging of all three in the correct order of 
occurrence, we get MWU “fish and chips”. After each merge, g is updated, d and every token in 
inBetweenWords are deleted, and the dependency relation between d and g is deleted. The process 
continues to the next iteration with the updated data structures, and stops when no more merges 
are made. 

Below is a walk through the merging process based on an example sentence: “Everything was 
great from the tasty braised short ribs with creamy saffron risotto to the delicious dessert.” Figure 
2 shows the POS tags, while Table 2 shows the grammatical dependency triples. Both POS 
tagging and dependency parsing were performed using the Stanford CoreNLP package. 

Everything/NN  was/VBD  great/JJ  from/IN  the/DT  tasty/JJ  braised/JJ  short/JJ  ribs/NNS  
with/IN  creamy/JJ  saffron/NN  risotto/NN  to/TO  the/DT  delicious/JJ  dessert/NN ./. 

Figure 2. POS tagged sentence. 
 

Relation name Governing word g 
(position) 

Depending word d 
(position) 

Relation description 

nsubj great (2) Everything (0) nominal subject 
cop great (2) was (1) copula 
det ribs (8) the (4) determiner 
amod braised (6) tasty (5) adjectival modifier 
amod ribs (8) braised (6) adjectival modifier 
amod ribs (8) short (7) adjectival modifier 
prep_from great (2) ribs (8) preposition “from” 
amod risotto (12) creamy (10) adjectival modifier 
nn risotto (12) saffron (11) noun modifier 
prep_with ribs (8) risotto (12) preposition “with” 
det dessert (16) the (14) determiner 
amod dessert (16) delicious (15) adjectival modifier 
prep_to great (2) dessert (16) preposition “to” 

Table 2. Dependency triples. 

Table 3 illustrates the merging process that takes place in Stage 1. In the first iteration, “short” 
and “ribs” are merged into “short ribs”, while “saffron” and “risotto” are merged into “saffron 
risotto”. “Delicious” and “dessert” are not merged because their NPMI is below the 
threshold_stage1 value (0.5). In the second iteration, we merge “creamy” with “saffron risotto”, 
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and “braised” with “short ribs”. Italicised words in the last column represent intermediate merge 
results, i.e. those that were merged into larger phrases in the subsequent iteration. 

Iteration d (position) g (position) Relation NPMI Decision Updated g 
1 short (7) ribs (8) amod 0.5066 merge short ribs 
1 delicious (15) dessert (16) amod 0.0867 no merge dessert 
1 saffron (11) risotto (12) nn no test merge  saffron risotto 
2 creamy (10) saffron risotto (12) amod 0.5015 merge creamy saffron risotto 
2 braised (6) short ribs (8) amod 0.6522 merge braised short ribs 

Table 3. The merge process in Stage 1. 

In Stage 2 (Table 4), we merge “creamy saffron risotto” with “braised short ribs” as they satisfy 
all the rules, including the NPMI, which is above threshold_stage2 value (0.75). 

d (position) g (position) Relation inBetween
Words 

NPMI Decision Updated g 

creamy 
saffron 
risotto (12) 

braised short 
ribs (8) 

prep_with with 0.9156 merge braised short ribs with 
creamy saffron risotto  

Table 4. The merge process in Stage 2. 

2.3.1.1 NPMI 
Pointwise Mutual Information (Church and Hanks, 1990) is one of the most commonly used word 
co-occurrence association measures. One characteristic of PMI is that it has no upper bound, 
which doesn’t allow us to compare PMI values against a fixed threshold in our task. The other 
well-known PMI characteristic is that it favours low-frequency words. Instead, we use 
Normalised PMI (NPMI), which was proposed by Bouma (2009). NPMI (Eq. 4) has fixed upper 
and lower bounds. When two words always occur together NPMI is 1; when they occur by 
chance, it is close to 0, when they always occur separately, it equals -1. NPMI also has been 
shown to have lower sensitivity to low-frequency words than PMI (Bouma, 2009).  

𝑁𝑃𝑀𝐼 𝑥, 𝑦 = log
𝑝(𝑥, 𝑦)
𝑝 𝑥 𝑝(𝑦)

− log 𝑝(𝑥, 𝑦)																																																					(4) 

Where: 𝑝(𝑥, 𝑦) is calculated as 𝑓(𝑥, 𝑦)/𝑁, where 𝑓(𝑥, 𝑦) is the number of times 𝑦 occurs 
immediately following 𝑥 in the corpus, and 𝑁 is the number of word occurrences (tokens) in the 
corpus; 𝑝(𝑥) 	= 	𝑓(𝑥)/𝑁; 𝑝(𝑦) 	= 	𝑓(𝑦)/𝑁. 

We used the corpus of 157,865 restaurant reviews (N=13,712,600) to calculate NPMI. When we 
calculate co-occurrences between phrases that have words occurring between them 
(inBetweenWords), we append the inBetweenWords to the first phrase in the correct order of 
occurrence. For instance to calculate NPMI between the phrases in Table 4, we set x to “braised 
short ribs with”, and y to “creamy saffron risotto”. 

We evaluated the following values of NPMI thresholds for Stage1 (threshold_Stage1) and Stage2 
(threshold_Stage2): 0.25, 0.5 and 0.75. The best results were obtained with threshold_Stage1=0.5 
and threshold_Stage2=0.75. The results for all combinations of values are presented in Section 3. 

2.3.1.2 Weighted NPMI 
One of the common types of merges that take place in Stage 1 are “JJ + NN”, i.e. between an 
adjective and a noun. The use of NPMI in determining whether to merge an adjective with a noun 
does not distinguish between subjective vs. non-subjective adjectives, such as “scrumptious” vs. 
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“spicy”. While subjective adjectives that occur with a large number of different nouns are often 
not merged (e.g. “delicious” in Table 3), some of the lower frequency subjective adjectives can 
have high NPMI scores with their co-occurring nouns. To rectify this problem, we propose a 
weighted NPMI approach, whereby we combine the NPMI score of the “JJ + NN” pair with the 
subjectivity score of the adjective. The subjectivity scores (Subj) of all adjectives in the corpus 
are pre-computed (Box 1a in Fig.1) by using the same semi-supervised method that is used for 
calculating similarity of nouns to seed dish names detailed in Section 2.2. Here, we use a small 
set of subjective adjectives as seeds and all adjectives extracted from the corpus of restaurant 
reviews as candidate words. The subjectivity scores of all adjectives in the corpus are normalised 
to be between 0 and 1. The NPMI is then combined with the subjectivity score of the adjective 
using Eq. 5. 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑁𝑃𝑀𝐼 𝑎, 𝑛 = 𝑁𝑃𝑀𝐼 𝑎, 𝑛 ×𝛼 + 1 − 𝑆𝑢𝑏𝑗 𝑎 × 1 − 𝛼 																												(5) 

Where: a – adjective, n – noun, α – tuning constant. 

The following values of α were evaluated: 0.3, 0.5 and 0.7. The results of the evaluation are 
detailed in Section 3. 

2.3.2 Weighting MWU aspects 
The final goal in our task is to find in each review the MWU aspects that belong to the desired 
category (dish names, in our example). For this we need to calculate a weight for each MWU 
aspect, representing its likelihood of belonging to this category, and rank them by this weight. 
Our approach to weighting MWU aspects is to combine the pre-computed similarity scores of 
single nouns they contain to seeds, as described in Section 2.2.  

The process of computing MWU weights is done in two phases: 

Phase 1. Here we compute the weights of all MWUs output by Stage 1 of the MWU merging 
process (see Table 1). The weights are computed immediately after the completion of all Stage 1 
merges, and only MWUs with weight>0 are considered for merging in Stage 2. 

The MWUs output by Stage 1 are simple NPs, that is, consisting of zero or more adjectives 
followed by one or more nouns. The rightmost noun in the NP is treated as the head of the NP. 
We hypothesise that the further away the noun is from the head of the NP, the less its score 
should contribute to the overall score of the NP. For instance, if we have a seed-similarity score 
of 0.5 for “pizza” and 0.2 for “restaurant”, intuitively “restaurant pizza” should be weighted 
higher than “pizza restaurant”. To achieve this we discount noun scores based on the distance 
from the end of the NP. We evaluate four discount functions (Table 5). 

Log-linear 𝐷 = 1 − 𝑙𝑜𝑔-[(𝑑\) 
Linear 𝐷 = 1 − ( 𝑑\ − 1 ×0.1) 
No discount 𝐷 = 1 

0.5 discount 𝐷 = 	1								𝑖𝑓	𝑑\ = 1
	0.5	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Table 5. Discount factors. 

Here di is the distance of the noun i from the end of the NP, with d of the last word being 1. 

𝑁𝑃𝑠𝑐𝑜𝑟𝑒 =
𝐷𝑤\b

\
𝑛

																																												(6) 
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Where: wi – seed-similarity score of the noun i calculated according to the method presented in 
Section 2.2.2 or using any of the other three similarity measures that were evaluated in our 
experiments; D – discount factor, n – number of nouns in the NP.  

In Section 3.1, we report performance comparison of these discount functions. “No discount” 
gives the best results, therefore it was used throughout the experiments reported in Section 3. 

In Phase 1 we also assign the weight of zero to those NPs, whose head noun is below the cut-off 
threshold in the list of single nouns ranked by seed-similarity. The cut-off threshold is set 
empirically. In our experiments, we set it to 1000 words. NPs with the weight of zero are not 
considered for merging in Stage 2 of the merging process. 

Phase 2. In this phase, we compute the weights of MWUs output by Stage 2 of the MWU 
merging process. Stage 2 outputs complex MWUs, which consist of two or more NPs. The weight 
of an MWU output by Stage 2 is the average of the weights of its constituent NPs (calculated in 
Phase 1). 

3. Evaluation 
The goal of the evaluation is to determine the effectiveness of the proposed method for extracting 
and ranking multiword review aspects belonging to the target aspect category. Restaurant dish 
names are used as the target aspect category in our experiments. We consider this to be one of the 
most challenging aspect categories to extract as there are many syntactically complex phrases 
among dish names, many of which are either unique or low-frequency. 

The dataset used for evaluation consists of 157,865 restaurant reviews from one of the major 
business review websites, provided to us by a partner organisation. The collection contains 
reviews for 32,782 restaurants in the United States. The average number of words per review is 
64.7.  We randomly selected 600 reviews, where all dish names and their subjective modifiers 
were manually labeled by two annotators. Each annotator labeled 300 reviews, then the third 
annotator acted as adjudicator, going through all labeled dish names and correcting errors, i.e. 
non-dish names labeled as dish names by mistake. In total, 1000 multiword and single-noun 
distinct dish names were labeled by the annotators in 600 reviews. The annotators labeled 
different sets of reviews, therefore inter-annotator agreement cannot be calculated. However, 
prior to this, the two annotators were asked to label dish names in the same set of 50 reviews. The 
annotators were not labeling a fixed set of items, which means that they may disagree on the 
boundaries of an expression, or the presence/absence of an annotation. For instance, one 
annotator may label “braised short ribs with creamy saffron risotto” as one dish name, whereas 
another could label “braised short ribs” and “creamy saffron risotto” as two dishes. For these 
reasons, it is not possible to use Kappa statistic to calculate inter-annotator agreement. Wiebe, 
Wilson and Cardie (2005) pointed out these annotation problems when there is no fixed set of 
items to label, and suggested the agr metric (Eq. 7). 

𝑎𝑔𝑟 𝑎 ∥ 𝑏 =
𝐴	𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔	𝐵

𝐴
																																										(7) 

Where: A is a set of text strings marked by the annotator a as dish names; and B are text strings 
marked by annotator b as dish names. Annotator a labeled 156 dish names, and annotator b 
labeled 143 dish names. They agreed on 105 dish names. Table 6 shows the inter-annotator 
agreement. 
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𝑎𝑔𝑟 𝑎||𝑏  𝑎𝑔𝑟 𝑏||𝑎  Average 

0.67 0.73 0.7 

Table 6. Inter-annotator agreement. 

As can be see from this table, the annotators can identify dish names with reasonable accuracy. 

We generated 20 seed sets, each consisting of 10 seed words. Sets 1-10 were used for tuning the 
system parameters, while sets 11-20 were used for testing. Seed sets were generated as follows: 
all single nouns were extracted from the 1000 dish names, from which the annotators selected 
only those nouns that refer to food. The reason why we did not automatically use all nouns is that 
some nouns in MWU dish names, do not refer to food, for example, “field” in “field salad”. In 
this manner, 573 unique single-word food/dish names were identified. They were then ranked by 
frequency of occurrence in the 600 reviews, and 20 seed sets were generated randomly from the 
list of 100 top-ranked nouns. As an example, one of the seed set consists of the following words: 
“roast”, “salad”, “potatoes”, “shrimp”, “roll”, “lime”, “mushrooms”, “sushi”, “cake”, “wine”. 

Evaluation was done per review, as we are interested in knowing how well each method ranks 
MWUs extracted from each review by the likelihood of being dish names. The output of the 
method is a ranked list of dish names per review. For each review Average Precision (AveP) is 
calculated, which is then averaged across all 600 reviews, giving Mean Average Precision (MAP). 
AveP is calculated in the same way as in document retrieval, except that here instead of having a 
ranked list of documents retrieved for a topic, we have a ranked list of dish names retrieved from 
each restaurant review. To sum up, to calculate AveP for each review we calculate precision at 
each dish name retrieved; these precision values are then averaged, dividing the sum of precision 
values by the total number of dish names for that review. 

As seed-similarity measures, we evaluated BM25-based method (Section 2.2), Lin’s method 
(Section 4.1.1), Weeds’ method (Section 4.1.2) and BalAPinc (Section 4.1.3). 

The following three MWU extraction methods were evaluated with each seed-similarity measure: 

• NP (baseline) – this method merges all words that conform to the “JJ(≥0) NN(≥1)” 
pattern, i.e. zero or more adjectives followed by one or more nouns. 

• NPMI – uses the two-stage MWU merging process as outlined in Section 2.3.1, with the 
Normalised Pointwise Mutual Information (Section 2.3.1.1) as the association measure. 

• weightedNPMI – based on the same two-stage process, but using weighted NPMI method 
described in Section 2.3.1.2. 

The MWU ranking in all three MWU extraction methods is done using the same approach, 
outlined in Section 2.3.2, with the “no discount” function, which showed slightly better 
performance than other discount functions (see Section 3.1). 

The best results in both training and test seed sets with all four seed-similarity measures were 
obtained with stage1_threshold=0.5 and stage2_threshold=0.75 in the MWU merging process. 
Table 6 shows the results of different MWU extraction methods with different seed-similarity 
measures. The results of NPMI and weightedNPMI methods are compared to NP as the baseline 
(used with the same seed-similarity function). Statistical significance test was done using paired t-
test. Results showing significant improvements over the corresponding baseline NP run are 
indicated with “a” superscript, while significant improvements of weightedNPMI runs over the 
corresponding NPMI runs are indicated with “b” superscript. Both are at 0.01 significance level. 
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As can be seen from Table 7, the MWU merging process with NPMI showed statistically 
significant improvements over the baseline NP runs with all seed similarity measures. The 
improvements gained are at least 17%. The combination of NPMI with the subjectivity score of 
adjectives (weightedNPMI runs) showed statistically significant improvements over NPMI in 
some runs. 

Method 
Training seed sets Test seed sets 

MAP >NP 
(%) 

>NPMI 
(%) MAP >NP 

(%) 
>NPMI 

(%) 
BM25 
NP-BM25 baseline 0.4945   0.4806   
NPMI-BM25 0.5786a 17  0.5637a  17.3  
weightedNPMI-BM25 (α=0.3) 0.5886ab  19 1.7 0.5747ab  19.6 1.9 
Lin 
NP-Lin baseline 0.5008   0.5009   
NPMI-Lin 0.5900a  17.8  0.5897a  17.7  
weightedNPMI-Lin (α=0.3) 0.5950ab  18.8 0.8 0.5971ab  19.2 1.2 
Weeds 
NP-Weeds baseline 0.4697   0.4730   
NPMI-Weeds 0.5569a  18.6  0.5593a  18.2  
weightedNPMI-Weeds (α=0.5) 0.5602a  19.3 0.6 0.5659ab  19.6 1.2 
balAPinc 
NP-balAPinc baseline 0.4946   0.4937   
NPMI-balAPinc 0.5810a  17.5  0.5787a  17.2  
weightedNPMI-balAPinc (α=0.5) 0.5821a 17.7 0.2 0.5829ab  18.1 0.7 

Table 7. Results of MWU extraction methods with different seed-similarity functions. 

In order to understand how much seed-similarity measures contribute to performance of the 
overall method, we conducted a run (IDF-NP), which merges all words that conform to the 
“JJ(≥0) NN(≥1)” pattern (the same rule as in NP runs in Table 7), but instead of a seed-similarity 
measure, IDF-NP uses the average of IDF values of all nouns in the MWU as its weight, which is 
then used for the ranking of MWUs. The MAP of IDF-NP is 0.2129, which is significantly lower 
than the MAP of all NP runs that use seed-similarity measures. 

Table 8 contains the results of NPMI-BM25 method with different values of stage1_threshold 
and stage2_threshold on the test seed sets. 

stage2 
threshold 

stage1 
threshold 

0.25 0.5 0.75 

0.25 0.4988 0.5442 0.5578 
0.5 0.5049 0.5499 0.5637 

0.75 0.4927 0.5347 0.5503 

Table 8. Results (MAP) of NPMI-BM25 with different stage1_threshold and stage2_threshold 
values on test seed sets. 
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3.1 Discount factors in NPscore 
In Section 2.3.2, we hypothesised that discounting scores of single nouns the further away they 
are from the head of the noun phrase is useful. We proposed four discount factors: “0.5 discount”, 
“log-linear”, “linear”, “no discount” (Table 5). The experiments did not support our hypothesis, 
showing that “no discount” gives the best results, although “linear” gave a similar, but slightly 
worse performance. Figure 3 shows the comparison of the discount factors applied to NPMI runs 
on 10 test seed sets. 

 

Figure 3. MAP of NPMI runs with different discount factors. 

Analysis of the effect of “linear” and “no discount” functions on performance for one of the test 
seed sets with the BM25 similarity function shows that out of 536 documents that have at least 
one dish name, 37 had a higher Average Precision (AveP) with “no discount”, with the average 
improvement of 8%, and 24 had a higher AveP with “linear” discount, with the average 
improvement of 21%.  

3.2 Regression analysis 
The NPMI method identifies the candidate strings for merging based on syntactic rules, and then 
uses only the strength of their co-occurrence association in deciding whether to merge them or 
not. In addition to the co-occurrence association strength between text strings, there are a number 
of other features available to us that could be useful in making the correct merge decision. 
Specifically, we have the following features: length of the strings that we are trying to merge, 
their part of speech and the dependency relationship between them. We performed a binary 
logistic regression analysis with the goal of learning a regression function that can be used in 
deciding whether or not to merge two strings. 

The regression analysis was done using 10-fold cross validation. First, we split the 600 
documents randomly into 10 sets. For each relevant MWU in each document, we generate tuples 
representing all possible contiguous combinations of n-grams. For example, if we have a relevant 
MWU “garlic green beans”, we generate four possible combinations of n-grams from it: 

• garlic, green 
• garlic, green beans 
• garlic green, beans 
• green, beans 

We will refer to this set of possible n-gram combinations as a relevant set {R}. Next, we run our 
MWU merging algorithm, as described in Table 1, however, instead of doing NPMI test, we 
check whether the combination of strings to be merged is in the relevant set {R} or not. If it is, 
we merge it, and add it as a relevant case into the dataset that will be used for regression. If it is 
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not in {R}, we do not merge it, and add it as a non-relevant set into the dataset to be used for 
regression. For each relevant and non-relevant case the following features are recorded: 

S1-length – number of words in the first string (S1). The first string is the string that appears 
before the second string in text; 
S2-length – number of words in the second string (S2); 
Relation – dependency relation between S1 and S2; 
NPMI – Normalised Pointwise Mutual Information between S1 and S2; 
Relevance – 1 – relevant (correct) merge (i.e. the n-gram combination is in the relevant set {R}), 
0 – non-relevant; 
Set – 1-10 (used for 10-fold cross-validation). 
 
The “Relation” is a categorical variable that can have the following values: amod, conj_and, nn, 
poss, prep_in, prep_with, prep_other. We grouped all prepositional relations that are neither 
“with”, nor “in” into “prep_other”, since they are very sparse. 

We experimented with using part of speech as a feature, but it did not have any effect on 
performance, since there is some degree of redundancy between part of speech and dependency 
relation, e.g. “amod” in our dataset is almost always a relationship between adjective and noun, 
whereas “nn” is always between two nouns.  

Next, we performed 10 logistic regression iterations (folds) using the 10-fold cross-validation 
method. For each fold, the training was done on 9 sets, and tested on the remaining set. For 
instance for fold 1, the training was done on sets 2-10, while testing on set 1. We rotated the sets 
used for training and testing. The dependent variable is “Relevance”, while “S1-length”, “S2-
length”, “Relation” and “NPMI” are independent variables. Table 9 shows the regression 
coefficients for the variables in regression for each of the 10 folds. The superscript “a” indicates 
that the variable is significant at 0.05 significance level, while “b” indicates significance at 0.01 
significance level. The entire categorical variable “Relation” is significant across all folds, as well 
as its individual  parameters of “conj_and” and “prep_other”. NPMI is also significant across all 
folds. Both the high regression coefficient for NPMI and its significance indicate that NPMI 
contributes to the model with the higher average NPMI for the correct (relevant) merges. S1-
length contributes to the model in all but two folds. The negative regression coefficient indicates 
that correct merges tend to have shorter first string than the incorrect merges. The length of the 
second string does not contribute to the model. The negative regression coefficient for “conj_and” 
and “prep_other” indicate that these relations are present in a larger number of incorrect merges 
than correct. 
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Folds 
Feature 1 2 3 4 5 6 7 8 9 10 

S1-length -.444a -.506a -.559a -.419 -.601a -.491a -.513a -.474a -.548a -.432 

S2-length .054 .093 .037 .013 .086 .100 .161 .074 .127 -.045 

Relationb                     

Relation (amod) .031 .029 -.220 .301 -.155 -.080 -.220 -.039 -.242 -.019 
Relation 
(conj_and) -1.721b -1.804b -2.078b -1.681b -1.888b -1.997b -1.991b -1.998b -2.077b -2.001b 

Relation (nn) .861 .841 .607 1.145a .671 .773 .619 .786 .539 .681 

Relation (poss) -1.004 -.517 -1.474 -.888 -1.502 -1.578 -1.513 -1.404 -1.409 -1.251 
Relation 
(prep_in) -.934 -.859 -1.146 -.820 -.598 -.642 -1.391a -.915 -1.138 -1.048 

Relation 
(prep_other) -1.759b -1.763b -1.898b -1.744b -1.844b -2.137b -1.946b -1.837b -2.145b -2.453b 

NPMI 4.780b 4.898b 4.947b 5.006b 4.977b 4.806b 4.773b 4.847b 4.900b 4.862b 

Constant -1.742a -1.719a -1.382 -2.073b -1.528a -1.654a -1.551a -1.651a -1.436 -1.551a 

Table 9. Regression coefficients for the variables used in the regression analysis. 

The following function was then used to calculate the probability of the correct merge: 

𝑝 =
𝑒(hijklkijmlmi⋯ijolo)

1 + 𝑒(hijklkijmlmi⋯ijolo)
														(8) 

Where α – constant, βi – regression coefficient, xi – variable value. Two strings were merged if p 
> 0.5. 

We performed 10 MWU extraction runs, one for each fold, with each distributional similarity 
measure. For example, in the first run, the coefficients for the first fold were used, with 
documents in set 1 used for evaluation. The MAP value was calculated for each of the 10 folds, 
and average was computed. The results are presented in Table 10. For comparison, the NPMI 
results are repeated from Table 7. Runs marked with “*” have statistically significant difference 
at 0.01 level, compared to NPMI runs. 

Method 
Training seed sets Test seed sets 

MAP >NPMI (%) MAP >NPMI (%) 
BM25 
NPMI-BM25 0.5786  0.5637   
regression-BM25 0.5918* 2.27 0.5767* 2.31 
Lin 
NPMI-Lin 0.5900   0.5897  
regression-Lin  0.6040* 2.36 0.6042* 2.46 
Weeds 
NPMI-Weeds 0.5569  0.5593   
regression-Weeds  0.5684* 2.05 0.5716* 2.19 
balAPinc 
NPMI-balAPinc 0.5810  0.5787  
regression-balAPinc  0.5937* 2.18 0.5924* 2.37 

Table 10. Results of the MWU extraction methods using regression function. 
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The results presented in Table 10 show that there is a statistically significant improvement in 
using the regression function compared to just NPMI. 

4. Related work 
Previous work on aspect extraction from user reviews did not focus on both identifying 
compound aspect names and ranking them by the likelihood of belonging to a specific aspect 
category. For instance, Yi et al (2003), Hu and Liu (2005), Popescu and Etzioni (2005), Jo and 
Oh (2011) proposed methods for extracting aspects in general, without grouping them into 
categories. Yi et al (2003) extracted noun phrases conforming to the pattern “JJ(0-2) NN(1-3)”. 
They also experimented with extracting only those noun phrases that are preceded by a definite 
article “the”, and those that occur at the beginning of the sentence and are followed by a verb 
phrase. Blair-Goldensohn et al. (2008) used a supervised method to identify complete sentences 
that refer to a coarse-grained aspect category. As part of their method, they extracted frequent 
aspects that are nouns or noun compounds of up to three words, occurring in either opinionated 
sentences or in certain syntactic patterns, such as following an adjective. A number of 
unsupervised approaches have also been proposed that automatically identify categories of 
aspects in the corpus of reviews and single words that are statistically associated with these 
categories (Titov and McDonald, 2008; Brody and Elhadad, 2010) 

The novelty of our method compared to the previous works on aspect extraction is that it 
identifies complex aspect names that belong to a specific category of aspects that can be defined 
by the end-user or application developer as a small set of seed words. 

There exist a number of corpus-based methods for extracting words belonging to the same 
semantic category. Based on the amount of training data required, there are three categories of 
methods: unsupervised, semi-supervised and supervised. Tsai and Chou (2011) proposed an 
unsupervised method for the extraction of dish names from Chinese blogs using suffix arrays and 
conditional random fields. Supervised methods typically use classifiers trained on a large amount 
of manually annotated data, e.g., (Rahman and Ng, 2010). Semi-supervised methods require only 
a small amount of training data, usually in the form of seed words. These methods are generally 
more attractive for practical applications than supervised methods since less manual labour is 
needed. Examples of semi-supervised methods are Meta-Bootstrapping (Riloff and Jones, 1999), 
Basilisk (Thelen and Riloff, 2002) and Snowball (Agichtein and Gravano, 2000). Semi-
supervised approaches rely on either (a) a number of hand-crafted extraction patterns, or (b) co-
occurrence information of lexical units, or (c) their distributional similarity. A comprehensive 
review of co-occurrence-based and distributional similarity approaches is given in (Weeds and 
Weir, 2006).  

One of the earliest methods using extraction patterns is a hyponymy detection method by Hearst 
(1992), who uses six patterns (e.g. “such X as *”) and a category name X to identify its 
hyponyms. Lately, a number of other methods using patterns were proposed, e.g. (Wang and 
Cohen, 2009; Etzioni et al., 2005; Kozareva, Riloff and Hovy, 2008). Wang and Cohen (2009) 
apply Hearst’s hyponymy patterns to get an initial set, and then expand it by a web-based 
algorithm from the pages containing seeds. Etzioni et al. (2005) also use a set of hyponymy 
patterns, and select candidates using Pointwise Mutual Information (PMI). Kozareva et al. (2008) 
use a doubly-anchored pattern “X such as Y and *” and a bootstrapping algorithm. All these 
methods require the scale and redundancy of the web, as the extraction patterns may not be 
frequently observed in smaller corpora. 
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Co-occurrence based methods rely on such statistical measures as PMI (Church et al., 1991), χ2 
(Chi-square) (Manning and Schütze, 1999) and Log-likelihood ratio (Dunning, 1993). Riloff and 
Shepherd (1997) rely on the co-occurrence of nouns in small window sizes with a small set of 
seeds. Yarowsky (1992) uses co-occurrence of words in windows of 100 words with words from 
a specific Roget thesaurus category to identify lists of words salient to this category. One 
limitation of the co-occurrence based measures is that words have to occur in the vicinity of the 
known words in order to be extracted. This limitation is overcome by distributional similarity 
methods.  

According to the distributional similarity principle, words that occur in similar contexts are likely 
to have similar meanings. A number of symmetric and asymmetric distributional similarity 
measures have been proposed. Measures proposed by Lin (1998) and Weeds and Weir (2006) are 
the most well-known symmetric distributional similarity measures. Lin’s measure uses 
grammatical dependency relations as features, weighted using Mutual Information. Weeds and 
Weir propose a general framework for computing distributional similarity measure based on the 
concepts of precision and recall. Kotlerman et al. (2009) propose an asymmetric (directional) 
similarity measure, balAPinc, designed to find words with more specialised meaning compared to 
the seed. They adapt the concept of average precision from Information Retrieval to calculate 
similarity between two words. In their approach the features in the vector of the seed word are 
analogous to the complete set of relevant documents, while the features in the vector of the 
candidate word are analogous to the retrieved documents. 

Distributional similarity methods also differ by the linguistic units they use as context. For 
example, Pantel et al. (2009) use noun phrase chunks to the left and right of a term as its context, 
while Lin (1998) and Kotlerman et al. (2009) use grammatical dependency relations as features. 
Weeds and Weir (2006) use verbs as features when calculating similarity between nouns. As 
discussed in (Kilgarriff and Yallop, 2000), the use of grammatical relations as features leads to 
the identification of “tighter” relationships between words, whereas the use of document- and 
sentence-level word co-occurrences would lead to the identification of “looser” relationships. So, 
while the former are better for identifying words belonging to the same semantic class, the latter 
are more appropriate for grouping words into subject categories. In our approach we use the 
former.  

4.1 Overview of distributional similarity measures used in this study 
In this section we describe three distributional similarity measures that were evaluated as part of 
our method. Scores calculated using Lin’s method (Eq. 10), Weeds’ method (Eq. 15), and 
balAPinc (Eq. 19) for each candidate word with respect to each of the seeds are then normalised 
and added in the same way as in the BM25 method (Eq. 3) to obtain one score for each candidate 
entity.  

4.1.1 Lin’s measure 
Lin’s method (Lin, 1998) uses grammatical dependency relations as features, weighted using 
Mutual Information. Each feature is a dependency triple (w, r, w'), where w and w' are words and 
r is a grammatical relation. Each feature is weighted by using Mutual Information as follows: 

𝐼 𝑤, 𝑟, 𝑤q = 𝑙𝑜𝑔
𝑓(𝑤, 𝑟, 𝑤q)×𝑓(∗, 𝑟,∗)
𝑓(𝑤, 𝑟,∗)×𝑓(∗, 𝑟, 𝑤q)

																																																														(9) 

Where: f(w, r, w') – the frequency of occurrence of the triple (w, r, w'), * – wildcard, for example, 
f(*, r, w') means the sum of frequencies of all dependency triples matching the pattern where the 
grammatical relation is r and the second word is w'. For example, if the entity is “pasta” and the 
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feature is “eat  VB:dobj:NN  pasta”, the Mutual Information between “pasta” and the feature will 
be calculated as follows: 

𝐼 𝑒𝑎𝑡, 𝑉𝐵: 𝑑𝑜𝑏𝑗: 𝑁𝑁, 𝑝𝑎𝑠𝑡𝑎 = 𝑙𝑜𝑔
𝑓(𝑒𝑎𝑡, 𝑉𝐵: 𝑑𝑜𝑏𝑗: 𝑁𝑁, 𝑝𝑎𝑠𝑡𝑎)×𝑓(∗, 𝑉𝐵: 𝑑𝑜𝑏𝑗: 𝑁𝑁,∗)
𝑓(𝑒𝑎𝑡, 𝑉𝐵: 𝑑𝑜𝑏𝑗: 𝑁𝑁,∗)×𝑓(∗, 𝑉𝐵: 𝑑𝑜𝑏𝑗: 𝑁𝑁, 𝑝𝑎𝑠𝑡𝑎)

 

Each word (candidate or seed) is represented as a vector T, consisting of pairs (r, w)  with I > 0. 
Similarity between a seed word s and a candidate word c is calculated as follows: 

𝐿𝐼𝑁 𝑐, 𝑠 =
(𝐼 𝑐, 𝑟, 𝑤 + 𝐼 𝑠, 𝑟, 𝑤 )(w,x)∈z(%)⋂z(')

𝐼 𝑐, 𝑟, 𝑤 + 𝐼(𝑠, 𝑟, 𝑤)(w,x)∈z(')(w,x)∈z(%)
																																												(10) 

For calculating Mutual Information scores, we used dependency triple frequencies obtained from 
the entire corpus of 157,865 restaurant reviews. For this, we performed dependency parsing using 
Stanford parser, resulting in the total of 8,707,162 dependency triples (2,931,118 unique). 

4.1.2 Weeds’ method 
Weeds and Weir (2003) propose a general framework for computing distributional similarity 
measure based on the concepts of precision and recall. Precision is calculated as follows: 

𝑃 𝑐, 𝑠 =
𝐷%(𝑓)5∈z(%)∩z(')

𝐷%(𝑓)5∈z(%)
																																																																						(11) 

Where Dc(f) is the degree of association between candidate word c and feature f. In their work, 
Weeds and Weir calculate similarity between nouns, using only verbs as features. They also 
discuss a number of possible word-feature association measures, including Mutual Information. 
In our work, as described earlier we used as features all dependency triples a word occurs in, and 
as a word-feature association measure we used Mutual Information (Eq 9). 

Recall is calculated as follows: 

𝑅 𝑐, 𝑠 =
𝐷'(𝑓)5∈z(%)∩z(')

𝐷(𝑓)5∈z(')
																																																																			(12) 

Weeds and Weir propose to combine the two measures using harmonic mean, which optimises 
the product of Precision and Recall, and arithmetic mean, which optimises the sum of Precision 
and Recall. In calculating the arithmetic mean they use tuning constant β to control the relative 
contribution of Precision and Recall. They then propose to combine the two means, controlling 
their relative contribution by means of tuning constant γ. 

𝑚~ 𝑐, 𝑠 =
2𝑃(𝑐, 𝑠)×𝑅(𝑐, 𝑠)
𝑃 𝑐, 𝑠 + 𝑅(𝑐, 𝑠)

																																																																										(13) 

 
𝑚� 𝑐, 𝑠 = 𝛽×𝑃 𝑐, 𝑠 + 1 − 𝛽 ×𝑅 𝑐, 𝑠 																																																												(14) 

 
𝑠𝑖𝑚 𝑐, 𝑠 = 𝛾×𝑚~ 𝑐, 𝑠 + 1 − 𝛾 ×𝑚� 𝑐, 𝑠 																																																							(15) 

In our experiments we evaluated on the 10 training dish name seed sets all possible combinations 
of β and γ, with values in the range from 0 to 1 in the increments of 0.1. The best performance 
was obtained with β=1 and γ=0.8. 

4.1.3 BalAPinc 
Kotlerman et al. (2009) propose a directional similarity measure, balAPinc, designed to find 
words with more specialised meaning compared to the seed. They adapt the concept of average 
precision from Information Retrieval to calculating similarity between two words. In their 
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approach the features in the vector of the seed word are analogous to the complete set of relevant 
documents, while the features in the vector of the candidate word are analogous to the retrieved 
documents. 

𝐴𝑃𝑖𝑛𝑐 𝑐 → 𝑠 =
𝑃(𝑟)×𝑟𝑒𝑙(𝑓w)

z�
w

𝑇%
																																																												(16) 

Where fr is the feature at rank r in the vector of the candidate word c. The features in each vector 
are ranked by Mutual Information according to Eq. 9. 

𝑟𝑒𝑙 𝑓 = 1 −
𝑟𝑎𝑛𝑘 𝑓, 𝑇'
𝑇' + 1

							 , if	𝑓 ∈ 𝑇'

0																																			, if	𝑓 ∉ 𝑇'
																																																					(17) 

Where rank(f,Ts) is the rank of feature f in the vector of the seed term s. 

𝑃 𝑟 =
𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑	𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠	𝑖𝑛	𝑟𝑎𝑛𝑘𝑠	1	𝑡𝑜	𝑟

𝑟
																																														(18) 

Where “included features in ranks 1 to r” are features that occur in both the seed word vector and 
in the ranked list of features in the candidate word vector between ranks 1 and r.  

𝑏𝑎𝑙𝐴𝑃𝑖𝑛𝑐 𝑐 → 𝑠 = 𝐿𝐼𝑁(𝑐, 𝑠)×𝐴𝑃𝑖𝑛𝑐(𝑐, 𝑠)																																													(19) 

Where LIN is the Lin’s similarity measure calculated according to Eq. 10. 

5. Conclusion 
In this paper we presented a method for identifying multiword aspects of user-written reviews 
that belong to a given category. The evaluation is done on the task of extracting dish names from 
restaurant reviews. The method initially computes distributional similarity between a seed word, 
representing a dish name, and each single noun in the corpus, and then produces a list of single 
nouns, ranked by similarity to all seeds. We compared three distributional similarity measures 
(Lin’s, Weeds’ and balAPinc), and a document retrieval function, BM25, adapted as a word 
similarity measure. In order to identify MWU boundaries, a combination of syntactic rules and a 
co-occurrence association measure was used. Specifically, we proposed a novel algorithm that 
“builds” MWU aspects in a bottom-up manner. The process begins with the single nouns that are 
governing words in syntactic dependency relations, and by following a set of syntactic rules, the 
adjacent words are merged with them in an iterative manner, one at a time. The decision of 
whether or not to merge two strings is determined by the syntactic rules, and the co-occurrence 
association between two strings, calculated using Normalized Pointwise Mutual Information. 

The results indicate that the proposed syntactic rule-based method for identifying MWU 
boundaries combined with the co-occurrence association measure, NPMI, is useful, showing 
statistically significant improvement over the method that uses simple Noun Phrases of the form 
“JJ(≥0) NN(≥1)”. In addition, the weighting of adjectives based on their similarity to subjective 
seed adjectives is also useful. We also performed a regression analysis, using variables, such as 
the length of word strings to be merged, the type of their dependency relationship, and NPMI. 
The results using the regression function showed statistically significant improvements compared 
to the method that only uses NPMI in deciding whether or not to merge two strings. Overall, 
regression analysis showed that three variables are useful in predicting correct and incorrect 
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merges: NPMI, length of the first string and dependency relation. Specifically, regression analysis 
indicates that correct string merges tend to have higher NPMI and a shorter first string than 
incorrect merges. Also, statistically significant negative regression coefficients for “conj_and” 
(conjunctive “and” dependency relation) and “prep_other” (prepositional modifiers other than 
“with” and “in”) indicate that these relations are present in a larger number of incorrect merges 
than correct.  

The proposed method is domain independent, as it uses only minimal supervision, i.e. a small set 
of seed words that can be provided by the end-user or application developer. Because the method 
does not rely on knowledge bases or annotated data sets, it is expected that it can be applied to 
other domains where entities tend to have syntactically complex names. In the future, we plan to 
evaluate the method on other domains. 
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