
An Information Retrieval-Based Approach to
Determining Contextual Opinion Polarity of Words

Olga Vechtomova1, Kaheer Suleman2, Jack Thomas2

1Department of Management Sciences, University of Waterloo, Waterloo, ON, Canada
ovechtom@uwaterloo.ca

2Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
{ksuleman, j26thoma}@uwaterloo.ca

Abstract
The paper presents a novel method for determining contextual polarity of ambi-
guous opinion words. The task of categorizing polarity of opinion words is cast
as an information retrieval problem. The advantage of the approach is that it
does not rely on hand-crafted rules and opinion lexicons. Evaluation on a set of
polarity-ambiguous adjectives as well as a set of both ambiguous and unambi-
guous adjectives shows improvements compared to a context-independent me-
thod.

1 Introduction
Opinion detection has been an active research area in recent years. There exist a large
number of approaches that attempt to identify a static sentiment polarity of words
(e.g. [1-3]). It has, however, been recognized that while certain words have an unam-
biguous polarity, e.g. “amazing”, “distasteful”, others change their polarity depending
on the context, e.g., “pizza was cold” vs. “beer was cold”. A number of methods have
been proposed to address this problem [4-7]. In [4] a supervised method was proposed
to determine contextual polarity of phrases. In [5] a number of rules were used, such
as conjunctions and disjunctions, manually created syntactic dependency rule tem-
plates, automatically derived morphological relationships and synonymy/antonymy
relationships from WordNet. Another approach [6] used an existing opinion lexicon
and a number of rules (e.g. negation rule, intra- and inter- sentence conjunction rules,
synonym and antonym rules). An approach in [7] used conjunctions of ambiguous
adjectives with unambiguous ones with known polarity from an opinion lexicon, and
also extracted groups of related target words from Wikipedia. All of the above meth-
ods rely on rules and/or existing resources, such as WordNet or opinion lexicons. In
this paper we propose an extensible framework for context-dependent polarity deter-
mination. To our knowledge this is the first method for this task, which does not rely
on hand-crafted or automatically generated rules and does not utilize any pre-existing
opinion vocabulary. The task of categorizing an opinion word instance into positive or
negative is cast as an information retrieval problem. We build one vector of all con-
texts of the word a in the positive document set (e.g. reviews with high ratings) and
another vector – of its contexts in the negative set. These vectors are treated as docu-
ments. We then build a context vector for the specific instance of a that we want to

categorize, which is treated as the query. An IR model is then applied to calculate the
query’s similarity to each of the two “documents”. As contexts we use dependency
triples containing a. The approach utilizes automatically extracted lexico-syntactic
contexts of the word’s occurrences and their frequencies without the need to build
hand-crafted rules or patterns or to use pre-existing opinion lexicons. For instance, the
method in [6] has an explicit rule for conjunctives. In contrast, in our approach any
conjunctives (e.g. “nice and cold”), that a word co-occurs with, say, in positive re-
views, are automatically added with all other dependency triples to the positive vector
of the word. In this way, the method captures a wide range of lexico-syntactic polarity
clues, such as adverbial modifiers (e.g., “barely”), nouns that are targets of the opin-
ion words, and miscellaneous syntactic constructs, such as “but” and negations. The
proposed framework is extensible in a number of ways: features could be expanded
(e.g., by adding other dependency triples in the sentence), filtered (e.g. by dependency
relation type), or grouped by similarity. The method is evaluated on a set of adjectives
with ambiguous polarity, and on another set of both ambiguous and unambiguous
adjectives.

2 Methodology
Most of the product and business review sites let users assign a numerical rating re-
presenting their level of satisfaction with a product or business. In our experiments,
we used a dataset of restaurant reviews, where each review has an associated rating on
a scale from 1 to 10. All reviews with a rating of 10 were used as a positive training
set, and all reviews with ratings 1 and 2 as negative. During the preparatory stage two
vectors of context features are created for each adjective a. One vector posV is built
based on the adjective’s occurrences in the positive set, and the second vector negV is
built based on its occurrences in the negative set. At the next stage, polarity of an
adjective occurrence a in a previously unseen document d is determined as follows:
vector evalV is built for this adjective based on its context within its sentence of oc-
currence in document d only. Then, a pairwise similarity of EvalV to the vector of the
same adjective in the positive set (vector posV) and in the negative set (vector negV)
is calculated.

2.1 Context feature vector construction

The following steps are performed on each of the two training sets: positive and
negative. Each document in a training set is processed by using a dependency parser
in the Stanford CoreNLP package. In each document, we first locate all nouns that
appear as governing words in at least one dependency relation. At this stage in the
algorithm, we can optionally apply a filter to process only those nouns that belong to
a specific list, e.g. words denoting a specific category of review aspects (e.g. food in
restaurant reviews). In our experiments we filtered the list by 456 food names which
were created by using a clustering method from another project in progress. Then, for
each governing word, its dependency triples with adjectives are extracted, where the
dependency relation is either an adjectival modifier (amod), nominal subject (nsubj)
or relative clause modifier (rcmod). An example of a dependency triple is nsubj(pizza,

hot), where “pizza” is a governor, while “hot” is a dependent word. For each adjective
instance we extract all triples, in which they occur as dependent words. If one of the
triples represents negation dependency relation (neg), we record that the adjective is
negated. For each adjective occurrence, the following information is recorded:

• negation (1 – adjective is negated; 0 – adjective is not negated);
• dependency relation of adjective with its governing noun (amod, nsubj or rcmod);
• adjective lemma (output by Stanford CoreNLP).

These three pieces of information form adjective pattern (AdjP), e.g., “negation=0;
amod; better”. A context feature vector is built for these patterns. The reason for buil-
ding vectors for lexico-syntactic adjective patterns as opposed to just adjective lem-
mas, is that, firstly, we want to differentiate between the negated and non-negated
instances, and, secondly, between various syntactic usages of the adjective. For in-
stance, adjectives occurring in a post-modifier position (e.g., in “nsubj” relationship to
the noun) tend to be used more in evaluative manner compared to those used in pre-
modifier position (c.f: “tea was cold” and “cold tea”). While “cold tea” usually refers
to a type of drink, “tea was cold” has an evaluative connotation. Also, the types of
dependency relations they occur in can be different, e.g. adjectives in post-modifier
position occur more with certain adverbial modifiers, which can give clues as to the
adjective’s polarity, such as “barely”, “too”, “overly”, “hardly”.

Next, for each adjective instance, represented as “negation; dependency relation;
lemma” adjective pattern, we extract all dependency relations that contain it. Each of
them is transformed into a context feature f of the form: “lemma; Part Of Speech
(POS); dependency relation”. For instance, if adjective “hot” occurs in dependency
triple nsubj(tea, hot), the following feature is created to represent “tea” and its syntac-
tic role with respect to the adjective: “tea, NN, nsubj”. For each feature we record its
frequency of co-occurrence with the adjective pattern (used as TF in Eq. 1). More
formally, the algorithm is described below:

Table 1. Algorithm 1: Construction of feature vectors for adjective syntactic patterns
1: For each document d ∈ T
2: For each valid noun n
3: For each adjective a, dependent of n
4: If DepRel(n,a) ∈{amod, rcmod, nsubj}
5: If any DepRel(a,w) = “neg”
6: negation(a) = 1
7: Else
8: negation(a) = 0
9: End If

 10: Create adjective pattern AdjP as “negation(a); DepRel(n,a); lemma(a)”
 11: For each DepRel(a,w)
 12: Create feature f as “lemma(w); POS(w); DepRel(a,w)”
 13: Add f to VAdjP; Increment frequency of f ∈ VAdjP

Where: valid noun n – noun that occurs in the list of nouns belonging to a specific

category of review aspects (optional step); T – training document set, either with posi-
tive or negative review ratings (the algorithm is run separately for positive and nega-

tive document sets); DepRel(n,a) – dependency relation between noun n and adjective
a; DepRel(a,w) – dependency relation between adjective a as either governor or de-
pendent and any other word w; POS(w) – part of speech of w. VAdjP – feature vector
for adjective pattern AdjP.

Algorithm 1 is used to generate vectors for all AdjP patterns extracted from the po-
sitive set and, separately, from the negative set during the preparatory stage. The same
algorithm is also used at the stage of determining the polarity of a specific adjective
occurrence. At that stage, only the sentence containing this adjective occurrence is
used to generate the vector EvalAdjP. The pairwise similarity of EvalAdjP with posVAdjP
and EvalAdjP with negVAdjP is computed. If similarity with posVAdjP is higher, it is cate-
gorized as positive, and as negative if similarity with negVAdjP is higher.

2.2 Computing similarity between vectors

We view the problem of computing similarity between vectors as a document re-
trieval problem. The vector (EvalVAdjP) of a specific adjective occurrence AdjP, whose
polarity we want to determine, is treated as the query, while the two vectors of AdjP
(posVAdjP and negVAdjP) created from the positive and negative training sets respec-
tively, are treated as documents. For the purpose of computing similarity we use
BM25 Query Adjusted Combined Weight (QACW) document retrieval function [8].
In [9] it was proposed to use it as a term-term similarity function. The EvalVAdjP is
treated as the query, while posVAdjP and negVAdjP as documents (VAdjP in Eq. 1)
𝑆𝑖𝑚 𝐸𝑣𝑎𝑙𝑉!"#$,𝑉!"#$ = !"(!!!!)

!!!"
×𝑄𝑇𝐹×𝐼𝐷𝐹!!

!!! (1)
Where: F – the number of features that EvalVAdjP and VAdjP have in common; TF –

frequency of feature f in VAdjP; QTF – frequency of feature f in EvalVAdjP; K =
k1×((1−b)+b×DL⁄AVDL); k1 – feature frequency normalization factor; b – VAdjP length
normalization factor; DL – number of features in VAdjP; AVDL – average number of
features in the vectors V for all AdjP patterns in the training set (positive or negative).
The b and k1 parameters were set to 0.9 and 1.6 respectively, as these showed best
performance in computing term-term similarity in [9]. The IDF (Inverse Document
Frequency) of the feature f is calculated as IDFf = log(N/nf), where, nf – number of
vectors V in the training set (positive or negative) containing feature f; N – total num-
ber of vectors V in the training set. A polarity score of AdjP is then calculated for both
positive and negative sets as follows:

PolarityScore = α × Sim(EvalVAdjP, VAdjP) + (1 – α) × P(AdjP) (2)
Where: P(AdjP) is calculated as number of occurrences of AdjP in the set (positive

or negative) / total number of occurrences of all AdjP patterns in this set; the best
result for α was 0.5. If PolarityScore is higher for the positive set, the polarity is posi-
tive, and if lower – negative.

3 Evaluation
For evaluation we used a corpus of 157,865 restaurant reviews from one of the ma-

jor business review websites, provided to us by a partner organization. The collection
contains reviews for 32,782 restaurants in the U.S. The average number of words per

review is 64.7. All reviews (63,519) with the rating of 10 were used as positive trai-
ning set, and all reviews with the ratings of 1 or 2 (18,713) as negative.

3.1 Evaluation on ambiguous adjectives

For this evaluation we specifically chose four adjectives (cold, warm, hot and soft)
that can have a positive or negative meaning depending on the context. From reviews
with ratings 3-9, we extracted all dependency triples, containing one of these adjecti-
ves in “nsubj” dependency relation with a noun representing a food name. The reason
why we used “nsubj” is that post-modifier adjectives are more likely to be opinio-
nated than pre-modifiers (i.e. related with “amod”). To select food nouns only, we
applied a filter of 456 food names, created by a clustering method from another pro-
ject in progress. For this experiment, we focused only on those cases that are not ne-
gated, i.e. do not occur in a dependency triple with “neg” relation. Two annotators
read 888 original sentences containing these adjectives, and judged the adjective oc-
currences as “positive”, “negative” or “objective” when they refer to food, and as
“non-food modifier” for cases not referring to food. The inter-annotator agreement
(Cohen’s Kappa) is 0.81. There were only 2 objective cases agreed upon by the anno-
tators, which are not included in the evaluation. The evaluation set consists of 519
positive and negative cases agreed upon by the two annotators. The cases are in the
following format: “document ID; noun token; negation; dependency relation; adjecti-
ve lemma; polarity”. The number of positive/negative cases for “cold” is 34/180, for
“warm”: 29/25, for “hot”: 196/10, and for “soft”: 31/14.

As the baseline a context-independent method was used based on the Kullback-
Leibler Divergence (KLD). KLD is used widely in IR, e.g. as a term selection mea-
sure for query expansion [10] and as a measure for weighting subjective words [11].
Polarity for each AdjP pattern is calculated as Ppos(AdjP)*log(Ppos(AdjP)/Pneg(AdjP)).
Ppos(AdjP) is calculated as Fpos(AdjP))⁄N, where Fpos (AdjP) is frequency of AdjP in
the positive set, N is the total number of occurrences of all AdjP pattern in the positive
set. Pneg(AdjP) is calculated in the same way. Cases with KLD>0 are considered as
positive, and with KLD<0 as negative. Table 2 shows Precision, Recall and F-measure
for the context-based method (ContextSim) and KLD.

3.2 Evaluation on a larger set of adjectives

A larger scale evaluation was done on 606 “nsubj” and “amod” adjective patterns
(482 positive and 124 negative) from 600 restaurant reviews. The dataset contains 164
distinct adjectives. The results are presented in Table 3.

While the overall improvement (F-measure) is higher for ContextSim, the precisi-
on is somewhat lower than KLD. Since the method demonstrates a much better per-
formance on ambiguous adjectives, it makes sense to apply it only to such adjectives.
We need, therefore, a method for detecting unambiguous adjectives (e.g. excellent)
with static polarity. This is left for future work.

Table 2. Results based on a set of ambiguous adjectives.

Method Precision Recall F-measure
ContextSim 0.9114 1 0.9536

KLD 0.8324 1 0.9085

Table 3. Results based on adjectives from 600 reviews.

Method Precision Recall F-measure
ContextSim 0.8874 0.967 0.9255

KLD 0.9185 0.9109 0.9147

4 Conclusion
The paper described a framework for determining contextual polarity of ambiguous

adjectives. The advantage of the proposed approach is that it does not rely on hand-
crafted rules of opinion lexicons. Performance on a number of ambiguous adjectives
is promising compared to a context-independent method using KLD. The proposed
framework is extensible in a number of ways: features could be expanded to include,
for instance, other dependency triples in the sentence or document, or on the contrary,
filtered by the dependency relation type. Currently, we are working on various exten-
sions of this framework, in particular, feature grouping, and are performing a larger
scale evaluation on different corpora.

References
1. Esuli A. and Sebastiani F. Determining Term Subjectivity and Term Orientation for

Opinion Mining. In Proc. of EACL, 2006.
2. Hu M. and Liu B. Mining and summarizing customer reviews. In Proc. of KDD, 2004.
3. Hatzivassiloglou, V. and McKeown, K. R. 1997. Predicting the semantic orientation of ad-

jectives. In Proc. of ACL (pp. 174–181).
4. Wilson T., Wiebe J., Hoffman P. Recognizing Contextual Polarity in Phrase-Level Senti-

ment Analysis. In Proc. of EMNLP, 2005.
5. Popescu A. and Etzioni O. Extracting Product Features and Opinions from Reviews. In

Proc. of EMNLP, 2005.
6. Ding X., Liu B. and Yu P. A holistic lexicon-based approach to opinion mining. In Proc.

of WSDM’08.
7. Fahrni A. and Klenner M. Old Wine or Warm Beer: Target-specific Sentiment Analysis of

Adjectives. In Proc. of the Symposium on Affective Language in Human and Machine,
AISB 2008 Convention.

8. Spärck Jones K., Walker S., and Robertson S. E. 2000. A probabilistic model of informati-
on retrieval: Development and comparative experiments. Information Processing and Ma-
nagement, 36(6), 779–808 (Part 1); 809–840 (Part 2).

9. Vechtomova O. and Robertson S.E. 2012. A Domain-Independent Approach to Finding
Related Entities. Information Processing and Management, 48(4), pp. 654-670.

10. Carpineto, C., De Mori, R., Romano, G., & Bigi, B. 2001. An information-theoretic ap-
proach to automatic query expansion. ACM ToIS, 19(1), 1–27.

11. Vechtomova O. 2010. Facet-based Opinion Retrieval from Blogs. Information Processing
and Management, 46(1), 71-88.

